thapsigargin and deoxynivalenol

thapsigargin has been researched along with deoxynivalenol* in 2 studies

Other Studies

2 other study(ies) available for thapsigargin and deoxynivalenol

ArticleYear
DON shares a similar mode of action as the ribotoxic stress inducer anisomycin while TBTO shares ER stress patterns with the ER stress inducer thapsigargin based on comparative gene expression profiling in Jurkat T cells.
    Toxicology letters, 2014, Jan-30, Volume: 224, Issue:3

    Previously, we studied the effects of deoxynivalenol (DON) and tributyltin oxide (TBTO) on whole genome mRNA expression profiles of human T lymphocyte Jurkat cells. These studies indicated that DON induces ribotoxic stress and both DON and TBTO induced ER stress which resulted into T-cell activation and apoptosis. The first goal of the present study was to provide final proof for these mode of actions by comparing the effects of 6 h exposure to DON and TBTO on mRNA expression to those of positive controls of ribotoxic stress (anisomycin), ER stress (thapsigargin) and T cell activation (ionomycin). Genes affected by anisomycin and the majority of genes affected by thapsigargin were affected in the same direction by DON and TBTO, respectively, confirming the expected modes of action. Pathway analysis further sustained that DON induces ribotoxic stress and both DON and TBTO induce unfolded protein response (UPR), ER stress, T cell activation and apoptosis. The second goal was to assess whether DON and/or TBTO affect other pathways above those detected before. TBTO induced groups of genes that are involved in DNA packaging and heat shock response that were not affected by thapsigargin. DON did not affect other genes than anisomycin indicating the effect of DON to be restricted to ribotoxic stress. This study also demonstrates that comparative gene expression analysis is a very promising tool for the identification of modes of action of immunotoxic compounds.

    Topics: Anisomycin; Apoptosis; Carcinogens; Cell Survival; Chromosome Mapping; Data Interpretation, Statistical; Endoplasmic Reticulum Stress; Gene Expression Profiling; Heat-Shock Proteins; Humans; Ionomycin; Jurkat Cells; Microarray Analysis; Mitochondrial Proteins; NF-E2-Related Factor 2; Nucleic Acid Synthesis Inhibitors; RNA, Neoplasm; T-Lymphocytes; Thapsigargin; Trialkyltin Compounds; Trichothecenes

2014
Down-regulation of the endoplasmic reticulum chaperone GRP78/BiP by vomitoxin (Deoxynivalenol).
    Toxicology and applied pharmacology, 2000, Feb-01, Volume: 162, Issue:3

    The mechanisms by which trichothecene mycotoxins cause immunological effects in leukocytes such as cytokine up-regulation, aberrant IgA production, or apoptotic cell death are not fully understood. In the present study, mRNA differential display analysis was used to evaluate changes in gene expression induced by the trichothecene vomitoxin (VT or deoxynivalenol) in a T-cell model, the murine EL-4 thymoma, that was stimulated with phorbol 12-myristate 13-acetate (PMA) and ionomycin (ION). Ten differentially expressed fragments of cDNA were isolated and sequenced and three of these were identified as the known genes GRP78/BiP, P58(IPK), and RAD17. Most notably, expression of GRP78/BiP (a 78-kDa glucose-regulated protein), a stress-response gene induced by agents or conditions that adversely affect endoplasmic reticulum (ER) function, was found to decrease in VT-exposed cells. Competitive RT-PCR analysis revealed that 250 ng/ml VT decreased GRP78/BiP mRNA expression in both unstimulated and PMA/ION-stimulated EL-4 cells at 6 and 24 h after VT treatment. Western blotting confirmed that VT (50 to 1000 ng/ml) also significantly diminished GRP/BiP protein levels in a dose-response manner in PMA/ION-stimulated cells. GRP78/BiP has been shown to play a role in regulation of protein folding and secretion, and to protect cells from apoptosis. When PMA/ION-stimulated cells were incubated with 50 to 1000 ng/ml VT for 24 h, 200-bp DNA laddering, a hallmark of apoptosis, increased in a dose-dependent manner. In addition to GRP78, mRNA expression of the cochaperone P58(IPK), which is the 58-kDa cellular inhibitor of the double-stranded RNA-regulated protein kinase (PKR), was also shown to be suppressed by VT-treatment. GRP78 and P58(IPK) are critical for maintenance of cell homeostasis and prevention of apoptosis. The down-regulation of these molecular chaperones by VT represent a novel observation and has the potential to impact immune function at multiple levels.

    Topics: Animals; Blotting, Western; Calcimycin; Carrier Proteins; DNA Fragmentation; DNA, Complementary; Down-Regulation; Endoplasmic Reticulum; Endoplasmic Reticulum Chaperone BiP; Enzyme Inhibitors; Heat-Shock Proteins; HSP40 Heat-Shock Proteins; Ionomycin; Ionophores; Mice; Molecular Chaperones; Repressor Proteins; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; T-Lymphocytes; Tetradecanoylphorbol Acetate; Thapsigargin; Thymoma; Trichothecenes

2000