thapsigargin has been researched along with 7-nitroindazole* in 1 studies
1 other study(ies) available for thapsigargin and 7-nitroindazole
Article | Year |
---|---|
Arachidonic acid regulates two Ca2+ entry pathways via nitric oxide.
Several regulated Ca2+ entry pathways have been identified, with capacitative Ca2+ entry (CCE) being the most characterized. In the present study, we examined Ca2+ entry pathways regulated by arachidonic acid (AA) in mouse parotid acini. AA induced Ca2+ release from intracellular stores, and increased Ca2+ entry. AA inhibited thapsigargin (Tg)-induced CCE, whereas AA activated Ca2+ entry when CCE was blocked by gadolinium (Gd3+). AA-induced Ca2+ entry was associated with depletion of calcium from ryanodine-sensitive stores; both AA-induced Ca2+ release and Ca2+ entry were inhibited by tetracaine and the nitric oxide synthase (NOS) inhibitor, 7-nitroindazole (7-NI). The nitric oxide (NO) donor, 1,2,3,4-ox-triazolium,5-amino-3-(3,4-dichlorophenyl)-chloride (GEA 3162), but not 8-bromo-cGMP, mimicked the effects of AA in inhibiting CCE. Results suggest that AA acts via nitric acid to inhibit the CCE pathway that is selective for Ca2+, and to activate a second Ca2+ entry pathway that is dependent on depletion of Ca2+ from ryanodine-sensitive stores. Topics: Animals; Arachidonic Acid; Calcium; Calcium Signaling; Cells, Cultured; Cyclic GMP; Enzyme Inhibitors; Fura-2; Gadolinium; Indazoles; Mice; Nitric Oxide; Parotid Gland; Ryanodine; Tetracaine; Thapsigargin; Triazoles | 2004 |