thapsigargin has been researched along with 5-nitro-2-(3-phenylpropylamino)benzoic-acid* in 8 studies
8 other study(ies) available for thapsigargin and 5-nitro-2-(3-phenylpropylamino)benzoic-acid
Article | Year |
---|---|
Aortas isolated from sinoaortic-denervated rats exhibit rhythmic contractions that are regulated by pharmacologically distinct calcium sources.
Sinoaortic denervation is characterized by arterial pressure lability, without sustained hypertension. Aortas isolated from rats with sinoaortic denervation present rhythmic contractions. We studied the participation of distinct Ca(2+) sources in the maintenance of the oscillations. Three days after the surgeries, aortic rings were placed in an organ chamber, and the incidence of aortas presenting rhythmic contractions was measured. Specific drugs were employed to analyse the participation of the Ca(2+) released from the sarcoplasmic reticulum [2-APB (diphenylborinic acid 2-aminoethyl ester), thapsigargin and ryanodine] and external Ca(2+) entry [Bay K 8644, verapamil and DMB (dimethylbenzyl amiloride)] on the rhythmic contractions. Additionally, we verified the effects of chloride channel blocker NPPB [5-nitro-2-(3-phenylpropylamino)-benzoic acid] on the maintenance of the rhythmic contractions. Under phenylephrine stimulus, sinoaortic-denervated rat aortas exhibited rhythmic contractions in the frequency of 4.5 +/- 0.50 cycles/min. and an amplitude of 0.465 +/- 0.05 g. 2-APB, thapsigargin and ryanodine inhibited the rhythmic contractions. Bay K 8644 increased the oscillations, reaching maximum values with a concentration of 50 nM (18.5 +/- 2.5 cycles/min.). The rhythmic contractions were inhibiting by verapamil and Ca(2+)-free solution. DMB and NPPB did not alter the oscillations. In conclusion, we observed that aorta isolated from sinoaortic-denervated rats present rhythmic contractions. Moreover, drugs that impaired intracellular Ca(2+) release from sarcoplasmic reticulum interrupted the oscillations. The oscillations also depend on the extracellular Ca(2+) entry through L-type Ca(2+). Topics: 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester; Amiloride; Animals; Aorta, Thoracic; Autonomic Denervation; Blood Pressure; Boron Compounds; Calcium Channel Agonists; Calcium Channel Blockers; Calcium Channels, L-Type; Calcium Signaling; Chloride Channels; Dose-Response Relationship, Drug; Inositol 1,4,5-Trisphosphate Receptors; Male; Membrane Transport Modulators; Nitrobenzoates; Periodicity; Phenylephrine; Rats; Rats, Wistar; Ryanodine; Ryanodine Receptor Calcium Release Channel; Sarcoplasmic Reticulum; Sarcoplasmic Reticulum Calcium-Transporting ATPases; Sodium Channel Blockers; Sodium-Calcium Exchanger; Thapsigargin; Time Factors; Vasoconstriction; Vasoconstrictor Agents; Verapamil | 2008 |
Calcium and voltage-dependent alterations of cell volume in neuroblastomaxglioma hybrid NG108-15 cells.
Intracellular calcium ([Ca2+](i)), cell volume, membrane potential and currents were measured in neuroblastomaxglioma hybrid cells to gain insight into how [Ca2+](i) controls cell volume. [Ca2+](i) was increased by fluid shear stress, mechanical stimulation of the cells, the Ca2+ ionophore A23187, caffeine and thapsigargin. The increase in [Ca2+](i) induced by mechanical stimulation was decreased by about 50% by caffeine and abolished after incubation of the cells in a Ca2+-free solution. Mechanical stimulation by stirring the cell suspension induced cell shrinkage that was abolished by caffeine, but induced cell swelling in Ca2+-free solution. In the presence of caffeine, A23187 induced cell shrinkage whereas thapsigargin induced cell swelling. Both cell volume changes were inhibited by the Cl- channel blocker 5-nitro-2-(3-phenylpropylamino) benzoic acid. The cells were hyperpolarized by fluid shear stress and A23187 and depolarized by caffeine, thapsigargin and intracellular EGTA. Under all these conditions, the membrane input resistance was decreased. Voltage-clamp experiments suggested that, in addition to an increased anionic current, fluid shear stress and A23187 increased a K+ current, whereas caffeine and intracellular Ca2+ chelation increased a non-selective cation current and thapsigargin increased both a K+ and a non-selective cation current. Taken together, these results suggest that, if cell volume is closely dependent on [Ca2+](i) and the activity of Cl- channels, its relative value is dependent on the ionic selectivity of co-activated channels and the membrane potential. Topics: Brain Neoplasms; Caffeine; Calcimycin; Calcium; Cell Size; Chloride Channels; Electric Stimulation; Electrophysiology; Glioma; Humans; Hybrid Cells; Ion Channels; Ionophores; Membrane Potentials; Neuroblastoma; Nitrobenzoates; Patch-Clamp Techniques; Phosphodiesterase Inhibitors; Physical Stimulation; Thapsigargin; Tumor Cells, Cultured | 2002 |
ATP stimulates calcium-dependent glutamate release from cultured astrocytes.
ATP caused a dose-dependent, receptor-mediated increase in the release of glutamate and aspartate from cultured astrocytes. Using calcium imaging in combination HPLC we found that the increase in intracellular calcium coincided with an increase in glutamate and aspartate release. Competitive antagonists of P(2) receptors blocked the response to ATP. The increase in intracellular calcium and release of glutamate evoked by ATP were not abolished in low Ca(2+)-EGTA saline, suggesting the involvement of intracellular calcium stores. Pre-treatment of glial cultures with an intracellular Ca(2+) chelator abolished the stimulatory effects of ATP. Thapsigargin (1 microM), an inhibitor of Ca(2+)-ATPase from the Ca(2+) pump of internal stores, significantly reduced the calcium transients and the release of aspartate and glutamate evoked by ATP. U73122 (10 microM, a phospholipase C inhibitor, attenuated the ATP-stimulatory effect on calcium transients and blocked ATP-evoked glutamate release in astrocytes. Replacement of extracellular sodium with choline failed to influence ATP-induced glutamate release. Furthermore, inhibition of the glutamate transporters p-chloromercuri-phenylsulfonic acid and Ltrans-pyrolidine-2,4-dicarboxylate failed to impair the ability of ATP to stimulate glutamate release from astrocytes. However, an anion transport inhibitor, furosemide, and a potent Cl(-) channel blocker, 5-nitro-2(3-phenylpropylamino)-benzoate, reduced ATP-induced glutamate release. These results suggest that ATP stimulates excitatory amino acid release from astrocytes via a calcium-dependent anion-transport sensitive mechanism. Topics: 4-Chloromercuribenzenesulfonate; Adenosine Triphosphate; Amino Acid Transport System X-AG; Animals; Aspartic Acid; Astrocytes; ATP-Binding Cassette Transporters; Caffeine; Calcium Signaling; Calcium-Transporting ATPases; Cells, Cultured; Cerebral Cortex; Chelating Agents; Chloride Channels; Chromatography, High Pressure Liquid; Egtazic Acid; Enzyme Inhibitors; Estrenes; Furosemide; Glutamic Acid; Ion Transport; Nitrobenzoates; Phosphatidylinositol Diacylglycerol-Lyase; Pyrrolidinones; Rats; Ryanodine; Sodium; Thapsigargin; Type C Phospholipases | 2001 |
Chloride is required for receptor-mediated divalent cation entry in mesangial cells.
Agonists which stimulate the inositol 1,4,5 trisphosphate ([1,4,5]-IP3)-dependent mobilization of Ca2+ from intracellular stores also stimulate entry of divalent cations across the cell membrane. Under appropriate experimental conditions, divalent cation entry across the cell membrane can be monitored as the rate at which the intracellular fluorescence of divalent cation indicators is quenched by the addition of Mn2+ to the extracellular medium. We report that addition of vasopressin to fura-2-loaded glomerular mesangial cells in culture markedly accelerated the rate at which Mn2+ quenched fura-2 fluorescence at its Ca(2+)-insensitive wavelength in the presence of extracellular NaCl, but that this quench response was attenuated when Cl- was removed from the extracellular medium by equimolar substitution with impermeant anions (gluconate, methanesulfonate, acetate, lactate). Similarly, loss of agonist-induced quench also occurred when Cl- was substituted with gluconate in K(+)-containing media. Addition of the Cl- channel inhibitor, 5-nitro-2-(3-phenylpropylaminobenzoic acid) (NPPB), also inhibited Mn(2+)-induced quench of fura-2 fluorescence following vasopressin addition. In contrast, in the presence of gramicidin to provide an alternate conductance pathway to accompany divalent cation entry, agonist-dependent Mn2+ quench occurred even in the absence of extracellular Cl-, indicating that the requirement for Cl- was not the result of cotransport on a common transporter nor the result of Cl- serving as a necessary cofactor for divalent cation entry. A similar dependence on extracellular Cl- was observed for other Ca(2+)-mobilizing agonists such as endothelin, as well as the intracellular Ca2+ ATPase inhibitor, thapsigargin. Extracellular Cl- dependence for agonist-induced divalent cation entry was also reflected in a corresponding extracellular Cl- dependence for agonist-induced mesangial cell contraction. It has been previously shown by ourselves (Kremer et al., 1992a, Am. J. Physiol., 262:F668-F678) and others that agonist-stimulated calcium mobilization in mesangial cells is accompanied by inhibition of K+ conductance and increased Cl- conductance. Accordingly, we conclude that the current findings suggest that activation of Cl- conductance provides regulated charge compensation for receptor-mediated divalent cation entry in response to Ca(2+)-mobilizing vasoconstrictor agonists in mesangial cells. Topics: Animals; Calcium-Transporting ATPases; Cations, Divalent; Cell Membrane Permeability; Cells, Cultured; Chloride Channels; Chlorides; Endothelins; Fluorescence; Glomerular Mesangium; Gluconates; Gramicidin; Hydrogen-Ion Concentration; Manganese; Nitrobenzoates; Potassium Channels; Rats; Rats, Sprague-Dawley; Receptors, Cell Surface; Sodium Chloride; Terpenes; Thapsigargin; Vasopressins | 1995 |
Blockade of capacitive Ca2+ influx by Cl- channel blockers inhibits secretion from rat mucosal-type mast cells.
Whole-cell patch-clamp recordings of membrane currents were performed in combination with measurements of mediator secretion from mucosal-type mast cells (rat basophilic leukemia cells, subline 2H3), to determine the involvement of membrane conductances induced upon depletion of intracellular Ca2+ stores. In patch-clamp experiments, ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid-induced depletion of internal Ca2+ stores led to activation of two distinct membrane conductances, a Ca2+ current and a Cl- current. The Ca2+ current was blocked by 100 microM La3+, which did not affect the Cl- current. In contrast, 500 microM 4,4'-diisothiocyanato-2,2'-disulfonic acid produced selective blocked of the Cl- current. Remarkably, the Cl- channel blockers 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB), niflumic acid, and N-phenylanthranilic acid (NPAA) inhibited not only the Cl- current but also the Ca2+ current. IC50 values for the blockade of the Ca2+ inward current by NPPB, niflumic acid, and NPAA were determined to be 23, 150, and 190 microM, respectively. In secretion experiments, thapsigargin-induced depletion of internal Ca2+ stores stimulated serotonin release, which was found to be strictly dependent on extracellular Ca2+. In the presence of 100 microM La3+ secretion was almost completely inhibited. In contrast, only 50% of secretion was suppressed by 500 microM 4,4'-diisothiocyanato-2,2'-disulfonic acid, which fully blocked the Cl- current without affecting Ca2+ influx, as monitored by electrophysiological experiments. The other Cl- channel blockers produced a very different pattern for the inhibitory dose dependence of secretion, with IC50 values for NPPB, niflumic acid, and NPAA of 23, 60, and 180 microM, respectively. Taken together, these findings suggest that Ca2+ store depletion leads to concomitant activation of Cl- and Ca2+ currents. Blockade of the latter is apparently an additional mode of action for diarylaminocarboxylate-type Cl- channel blockers inhibiting mast cell secretory responses. Topics: Animals; Calcium; Cell Line; Chloride Channels; Chlorides; Intracellular Fluid; Ion Transport; Lanthanum; Mast Cells; Mucous Membrane; Nitrobenzoates; Rats; Serotonin; Terpenes; Thapsigargin | 1995 |
Calcium entry activated by store depletion in human umbilical vein endothelial cells.
We have used the patch clamp technique combined with simultaneous measurement of intracellular Ca2+ to record ionic currents activated by depletion of intracellular Ca(2+)-stores in endothelial cells from human umbilical veins. Two protocols were used to release Ca2+ from intracellular stores, i.e. loading of the cells via the patch pipette with Ins(1,4,5)P3, and extracellular application of thapsigargin. Ins(1,4,5)P3 (10 microM) evoked a transient increase in [Ca2+]i in cells exposed to Ca(2+)-free extracellular solutions. A subsequent reapplication of extracellular Ca2+ induced an elevation of [Ca2+]i. These changes in [Ca2+]i were very reproducible. The concomitant membrane currents were neither correlated in time nor in size with the changes in [Ca2+]i. Similar changes in [Ca2+]i and membrane currents were observed if the Ca(2+)-stores were depleted with thapsigargin. Activation of these currents was prevented and holding currents at -40 mV were small if store depletion was induced in the presence of 50 microM NPPB. This identifies the large currents, which are activated as a consequence of store-depletion, as mechanically activated Cl- currents, which have been described previously [1,2]. Loading the cells with Ins(1,4,5)P3 together with 10 mM BAPTA induced only a very short lasting Ca2+ transient, which was not accompanied by activation of a detectable current, even in a 10 mM Ca(2+)-containing extracellular solution. Also thapsigargin does not activate any membrane current if the pipette solution contains 10 mM BAPTA (ruptured patches). The contribution of Ca(2+)-influx to the membrane current during reapplication of 10 mM extracellular calcium to thapsigargin-pretreated cells was estimated from the first time derivative of the corresponding Ca2+ transients at different holding potentials. These current values showed strong inward rectification, with a maximal amplitude of 1.0 +/- 0.3 pA at -80 mV (n = 8; membrane capacitance 59 +/- 9 pF).(ABSTRACT TRUNCATED AT 250 WORDS) Topics: Calcium; Calcium-Transporting ATPases; Chloride Channels; Egtazic Acid; Endothelium, Vascular; Humans; Inositol 1,4,5-Trisphosphate; Ion Transport; Membrane Potentials; Nitrobenzoates; Patch-Clamp Techniques; Terpenes; Thapsigargin; Umbilical Veins | 1994 |
Inhibition of capacitative Ca2+ entry by a Cl- channel blocker in human endothelial cells.
We have used the patch clamp technique in combination with intracellular calcium measurements to measure simultaneously Ca2+ entry and ionic currents activated by emptying of intracellular Ca2+ stores (capacitative Ca2+ entry and Ca2+ release-activated Ca2+ currents, CRAC) in human endothelial cells from umbilical veins. Intracellular stores were depleted of Ca2+ by preincubating endothelial cells for 20 minutes with 2 microM thapsigargin in Ca(2+)-free solution. Reapplication of 10 mM [Ca2+]e evoked an increase in [Ca2+]i indicating Ca2+ influx after the thapsigargin-induced store depletion (capacitative Ca2+ entry), however no measurable CRAC could be detected. The increase in [Ca2+]i after [Ca2+]e resubmission was substantially reduced in the presence of 50 microM NPPB (5-nitro-2-(3-phenylpropylamino)-benzoic acid) from 0.77 +/- 0.25 microM to 0.2 +/- 0.06 microM (n = 6) at a holding potential of -40 mV. Estimates of the capacitative Ca2+ entry at various membrane potentials from the first time derivative of the Ca2+ transients showed a highly inwardly rectifying I-V curve with a Ca2+ inward current amplitude of 1.0 +/- 0.3 pA (membrane capacitance 59 +/- 9 pF, n = 8) at -80 mV. This current amplitude was decreased to 0.32 +/- 0.12 pA (n = 6) in the presence of 50 microM NPPB. This corresponds to a decrease in the Ca2+ permeability of the endothelial cell membrane from 0.15 x 10(-8) cm/s (control) to 0.06 x 10(-8) cm/s (50 microM NPPB). Topics: Calcium; Calcium-Transporting ATPases; Cell Membrane Permeability; Chloride Channels; Endoplasmic Reticulum; Endothelium, Vascular; Humans; Nitrobenzoates; Patch-Clamp Techniques; Terpenes; Thapsigargin; Umbilical Veins | 1994 |
Thyrotropin regulation of basolateral Cl- and I- effluxes in thyroid follicles in culture.
This report describes chloride and iodide effluxes across the basolateral membrane of porcine thyroid follicles reconstituted in culture. Basolateral chloride efflux is activated by thyrotropin (TSH). TSH (10 mU/ml) induces a twofold increase in the initial rate of chloride efflux. Forskolin (FSK, 5 microM) which increases intracellular cAMP also stimulates the initial rate of chloride efflux 3.5-fold, whereas an increase in the free cytosolic Ca2+ with the ionophore A23187 or thapsigargin, fails to mimic the TSH effect. The chloride channel blocker 5-nitro-2(3-phenylpropylamino)benzoic acid (NPPB) dose dependently inhibits chloride efflux rates with the maximal and half maximal effects observed for 100 microM and 30 microM, respectively. Basolateral chloride efflux rates are also inhibited in the presence of the organic anion transporter blocker probenecid (5 mM) or the Cl-/HCO3- exchanger blocker 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid (SITS, 250 microM), respectively, by 60% and 40%, whereas it is not affected by ClO4 (100 microM). The initial rate of iodide efflux is weakly activated (1.4-fold) by TSH (10 mU/ml). TSH effect could be reproduced by agents known to activate Ca(2+)-dependent processes as A23187, ionomycin (1 microM), phorbol 12-myristate 13-acetate (TPA, 0.1 microM) and epidermal growth factor (EGF, 0.1 microM) which increase the initial rate of iodide efflux from 1.2- to 1.8-fold, whereas FSK is without effect. The chloride channel blocker NPPB (500 microM) is required to significantly inhibit the initial rate of iodide efflux by 30%. The initial rate of iodide efflux is also reduced by 30% in the presence of SITS (250 microM) or probenecid (5 mM) whereas it is activated by ClO4 (100 microM). We conclude that basolateral chloride and iodide effluxes are both regulated by TSH, using two different transduction pathways. Chloride efflux regulation may involve a cAMP transduction signal, whereas the regulation of iodide efflux may involve a Ca2+ signal. Furthermore, as the sensitivities of chloride and iodide effluxes for the anion transporter blockers (especially NPPB) are different, it seems likely that chloride and iodide use two different transport pathways. Topics: 4-Acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic Acid; Animals; Antiporters; Calcimycin; Calcium; Cell Membrane; Cells, Cultured; Chloride Channels; Chlorides; Colforsin; Cyclic AMP; Iodides; Kinetics; Nitrobenzoates; Probenecid; Swine; Terpenes; Thapsigargin; Thyroid Gland; Thyrotropin | 1994 |