thapsigargin has been researched along with 3-methyladenine* in 6 studies
6 other study(ies) available for thapsigargin and 3-methyladenine
Article | Year |
---|---|
Helicobacter pylori VacA induces autophagic cell death in gastric epithelial cells via the endoplasmic reticulum stress pathway.
The Helicobacter pylori vacuolating cytotoxin (VacA) can promote progressive vacuolation and gastric injury and may be associated with human gastric cancer. Increasing evidence indicates that autophagy is involved in the cell death induced by VacA, but the specific mechanisms need to be further elucidated. We show here that VacA could induce autophagy and increase cell death in human gastric cancer cell lines. Further investigations revealed that inhibition of autophagy could decrease the VacA-induced cell death in AGS cells. Furthermore, numerous dilated endoplasmic reticula (ER) were observed, and the phosphorylation of a subunit of eukaryotic translation initiation factor 2 subunit 1 also increased in the VacA-treated AGS cells, while repression of ER stress could reduce autophagy and cell death through knockdown of activating transcription factor 4 and DNA-damage-inducible transcript 3. In addition, the expression of pseudokinase tribbles homolog 3 (TRIB3) upon ER stress was triggered by VacA, and knockdown of TRIB3 could also decrease VacA-induced cell death. Finally, inhibition of autophagy could decrease VacA Topics: Activating Transcription Factor 4; Adenine; Amino Acid Chloromethyl Ketones; Animals; Autophagy; Bacterial Proteins; Cell Cycle Proteins; Cell Line, Tumor; Endoplasmic Reticulum; Endoplasmic Reticulum Stress; Epithelial Cells; Eukaryotic Initiation Factor-2; Gene Expression Regulation, Neoplastic; Helicobacter pylori; Humans; Macrolides; Mice; Poly (ADP-Ribose) Polymerase-1; Protein Serine-Threonine Kinases; Repressor Proteins; RNA, Small Interfering; Signal Transduction; Thapsigargin; Transcription Factor CHOP; Vacuoles | 2017 |
Autophagy of cytoplasmic bulk cargo does not require LC3.
To investigate the role of LC3 in bulk autophagy we compared its autophagic-lysosomal processing (using an improved quantitative immunoblotting method) with autophagic-lysosomal bulk cargo flux (measured by our established LDH [lactate dehydrogenase] sequestration assay) in amino acid-starved rat hepatocytes treated with cycloheximide to prevent new LC3 influx. Block-release experiments with the reversible autophagy inhibitors 3-methyladenine (3MA) and thapsigargin (TG) showed that while only 3MA suppressed phagophoric LC3 attachment (lipidation), both inhibitors prevented phagophore closure (cargo sequestration). Upon release from closure blockade, some autophagic-lysosomal LC3 flux was resumed even in the presence of 3MA, i.e., without an accompanying bulk cargo flux. Conversely, whereas the autophagic-lysosomal flux of LC3 halted within ∼100 min of cycloheximide treatment, the bulk cargo flux continued at a high rate. siRNA-mediated knockdown of LC3 family proteins in LNCaP prostate carcinoma cells confirmed that autophagy of cytoplasmic bulk cargo was completely LC3 independent also in these cells, and in the absence of cycloheximide. However, a strong requirement for GABARAP family proteins was evident. Since bulk autophagy of cytoplasm (macroautophagy) and autophagic-lysosomal LC3 processing may apparently be mutually independent, LC3 would seem to be unsuitable as a general indicator of autophagy. Topics: Adenine; Animals; Autophagy; Cell Line, Tumor; Cycloheximide; Cytoplasm; Hepatocytes; Humans; Microtubule-Associated Proteins; Rats; Thapsigargin | 2016 |
Autophagy modulates endoplasmic reticulum stress-induced cell death in podocytes: a protective role.
Endoplasmic reticulum stress occurs in a variety of patho-physiological mechanisms and there has been great interest in managing this pathway for the treatment of clinical diseases. Autophagy is closely interconnected with endoplasmic reticulum stress to counteract the possible injurious effects related with the impairment of protein folding. Studies have shown that glomerular podocytes exhibit high rate of autophagy to maintain as terminally differentiated cells. In this study, podocytes were exposed to tunicamycin and thapsigargin to induce endoplasmic reticulum stress. Thapsigargin/tunicamycin treatment induced a significant increase in endoplasmic reticulum stress and of cell death, represented by higher GADD153 and GRP78 expression and propidium iodide flow cytometry, respectively. However, thapsigargin/tunicamycin stimulation also enhanced autophagy development, demonstrated by monodansylcadaverine assay and LC3 conversion. To evaluate the regulatory effects of autophagy on endoplasmic reticulum stress-induced cell death, rapamycin (Rap) or 3-methyladenine (3-MA) was added to enhance or inhibit autophagosome formation. Endoplasmic reticulum stress-induced cell death was decreased at 6 h, but was not reduced at 24 h after Rap+TG or Rap+TM treatment. In contrast, endoplasmic reticulum stress-induced cell death increased at 6 and 24 h after 3-MA+TG or 3-MA+TM treatment. Our study demonstrated that thapsigargin/tunicamycin treatment induced endoplasmic reticulum stress which resulted in podocytes death. Autophagy, which counteracted the induced endoplasmic reticulum stress, was simultaneously enhanced. The salvational role of autophagy was supported by adding Rap/3-MA to mechanistically regulate the expression of autophagy and autophagosome formation. In summary, autophagy helps the podocytes from cell death and may contribute to sustain the longevity as a highly differentiated cell lineage. Topics: Adenine; Animals; Anti-Bacterial Agents; Apoptosis; Autophagy; Cell Line; Endoplasmic Reticulum Chaperone BiP; Endoplasmic Reticulum Stress; Mice; Models, Animal; Phagosomes; Podocytes; Sirolimus; Thapsigargin; Tunicamycin | 2015 |
Facilitated ethanol metabolism promotes cardiomyocyte contractile dysfunction through autophagy in murine hearts.
Chronic drinking leads to myocardial contractile dysfunction where ethanol metabolism plays an essential role. Acetaldehyde, the main ethanol metabolite, mediates alcohol-induced cell injury although the underlying mechanism is still elusive. This study was designed to examine the mechanism involved in accelerated ethanol metabolism-induced cardiac defect with a focus on autophagy. Wild-type FVB and cardiac-specific overexpression of alcohol dehydrogenase mice were placed on a 4% nutrition-balanced alcohol diet for 8 weeks. Myocardial histology, immunohistochemistry, autophagy markers and signal molecules were examined. Expression of micro RNA miR-30a, a potential target of Beclin 1, was evaluated by real-time PCR. Chronic alcohol intake led to cardiac acetaldehyde accumulation, hypertrophy and overt autophagosome accumulation (LC3-II and Atg7), the effect of which was accentuated by ADH. Signaling molecules governing autophagy initiation including class III PtdIns3K, phosphorylation of mTOR and p70S6K were enhanced and dampened, respectively, following alcohol intake. These alcohol-induced signaling responses were augmented by ADH. ADH accentuated or unmasked alcohol-induced downregulation of Bcl-2, Bcl-xL and MiR-30a. Interestingly, ADH aggravated alcohol-induced p62 accumulation. Autophagy inhibition using 3-MA abolished alcohol-induced cardiomyocyte contractile anomalies. Moreover, acetaldehyde led to cardiomyocyte contractile dysfunction and autophagy induction, which was ablated by 3-MA. Ethanol or acetaldehyde increased GFP-LC3 puncta in H9c2 cells, the effect of which was ablated by 3-MA but unaffected by lysosomal inhibition using bafilomycin A(1), E64D and pepstatin A. In summary, these data suggested that facilitated acetaldehyde production via ADH following alcohol intake triggered cardiac autophagosome formation along with impaired lysosomal degradation, en route to myocardial defect. Topics: Acetaldehyde; Adenine; Alcohol Dehydrogenase; Alcohol Drinking; Animals; Autophagy; bcl-X Protein; Biomarkers; Ethanol; Fluorescent Antibody Technique; Heart; Lysosomes; Mice; MicroRNAs; Microtubule-Associated Proteins; Myocardial Contraction; Myocardium; Myocytes, Cardiac; Rats; Signal Transduction; Thapsigargin | 2012 |
Autophagy pathways activated in response to PDT contribute to cell resistance against ROS damage.
Reactive oxygen species (ROS) concurrently instigate apoptosis and autophagy pathways, but the link between these processes remains unclear. Because cytotoxic ROS formation is exploited in anticancer therapy, such as in photodynamic therapy (PDT), a better understanding of the complex interplay between autophagy and apoptosis is urgently required. Previously, we reported that ROS generated by PDT with an endoplasmic reticulum (ER)-associated sensitizer leads to loss of ER-Ca(2+) homeostasis, ER stress and apoptosis. Here we show that PDT prompted Akt-mTOR (mammalian target of rapamycin) pathway down-regulation and stimulated macroautophagy (MA) in cancer and normal cells. Overexpression of the antioxidant enzyme glutathione peroxidase-4 reversed mTOR down-regulation and blocked MA progression and apoptosis. Attenuating MA using Atg5 knockdown or 3-methyladenine, reduced clearance of oxidatively damaged proteins and increased apoptosis, thus revealing a cytoprotective role of MA in PDT. Paradoxically, genetic loss of MA improved clearance of oxidized proteins and reduced photokilling. We found that up-regulation of chaperone-mediated autophagy (CMA) in unstressed Atg(-/-) cells compensated for MA loss and increased cellular resistance to PDT. CMA-deficient cells were significantly sensitized to photokilling but were protected against the ER stressor thapsigargin. These results disclose a stress-specific recruitment of autophagy pathways with cytoprotective function and unravel CMA as the dominant defence mechanism against PDT. Topics: Adenine; Animals; Anthracenes; Apoptosis; Autophagy; Autophagy-Related Protein 5; Cell Line, Tumor; Endoplasmic Reticulum; Gene Expression; Glutathione Peroxidase; Humans; Mice; Microtubule-Associated Proteins; Molecular Chaperones; Oncogene Protein v-akt; Perylene; Photochemotherapy; Photosensitizing Agents; Reactive Oxygen Species; Thapsigargin; TOR Serine-Threonine Kinases | 2011 |
Effect of autophagy on multiple myeloma cell viability.
Because accumulation of potentially toxic malfolded protein may be extensive in immunoglobulin-producing multiple myeloma (MM) cells, we investigated the phenomenon of autophagy in myeloma, a physiologic process that can protect against malfolded protein under some circumstances. Autophagy in MM cell lines that express and secrete immunoglobulin and primary specimens was significantly increased by treatment with the endoplasmic reticulum stress-inducing agent thapsigargin, the mammalian target of rapamycin inhibitor rapamycin, and the proteasome inhibitor bortezomib. Inhibition of basal autophagy in these cell lines and primary cells by use of the inhibitors 3-methyladenine and chloroquine resulted in a cytotoxic effect that was associated with enhanced apoptosis. Use of small interfering RNA to knock down expression of beclin-1, a key protein required for autophagy, also inhibited viable recovery of MM cells. Because the data suggested that autophagy protected MM cell viability, we predicted that autophagy inhibitors would synergize with bortezomib for enhanced antimyeloma effects. However, the combination of these drugs resulted in an antagonistic response. In contrast, the autophagy inhibitor 3-methyladenine did synergize with thapsigargin for an enhanced cytotoxic response. These data suggest that autophagy inhibitors have therapeutic potential in myeloma but caution against combining such drugs with bortezomib. Topics: Adenine; Antifungal Agents; Antimalarials; Antineoplastic Agents; Apoptosis; Apoptosis Regulatory Proteins; Autophagy; Beclin-1; Boronic Acids; Bortezomib; Cell Proliferation; Chloroquine; Drug Therapy, Combination; Enzyme Inhibitors; Humans; Immunoblotting; Membrane Proteins; Microscopy, Fluorescence; Multiple Myeloma; Pyrazines; RNA, Small Interfering; Sirolimus; Thapsigargin; Tumor Cells, Cultured | 2009 |