Page last updated: 2024-08-24

tetroxoprim and epiroprim

tetroxoprim has been researched along with epiroprim in 6 studies

Research

Studies (6)

TimeframeStudies, this research(%)All Research%
pre-19902 (33.33)18.7374
1990's3 (50.00)18.2507
2000's1 (16.67)29.6817
2010's0 (0.00)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Richards, WG; So, SS1
Hansch, C; Li, RL; Poe, M; Selassie, CD1
Debnath, G; Fang, ZX; Hansch, C; Kaufman, BT; Klein, TE; Langridge, R; Li, RL; Selassie, CD1
Fang, ZX; Hansch, C; Kaufman, BT; Klein, T; Langridge, R; Li, RL; Selassie, CD1
Queener, SF1
Loukas, YL1

Reviews

1 review(s) available for tetroxoprim and epiroprim

ArticleYear
New drug developments for opportunistic infections in immunosuppressed patients: Pneumocystis carinii.
    Journal of medicinal chemistry, 1995, Nov-24, Volume: 38, Issue:24

    Topics: Animals; Drug Design; Humans; Immunosuppression Therapy; Molecular Structure; Opportunistic Infections; Pneumonia, Pneumocystis; Structure-Activity Relationship

1995

Other Studies

5 other study(ies) available for tetroxoprim and epiroprim

ArticleYear
Application of neural networks: quantitative structure-activity relationships of the derivatives of 2,4-diamino-5-(substituted-benzyl)pyrimidines as DHFR inhibitors.
    Journal of medicinal chemistry, 1992, Aug-21, Volume: 35, Issue:17

    Topics: Drug Design; Folic Acid Antagonists; Neural Networks, Computer; Pyrimidines; Regression Analysis; Structure-Activity Relationship

1992
On the optimization of hydrophobic and hydrophilic substituent interactions of 2,4-diamino-5-(substituted-benzyl)pyrimidines with dihydrofolate reductase.
    Journal of medicinal chemistry, 1991, Volume: 34, Issue:1

    Topics: Diamines; Escherichia coli; Folic Acid Antagonists; Kinetics; Lacticaseibacillus casei; Molecular Structure; Protein Binding; Pyrimidines; Structure-Activity Relationship

1991
On the structure selectivity problem in drug design. A comparative study of benzylpyrimidine inhibition of vertebrate and bacterial dihydrofolate reductase via molecular graphics and quantitative structure-activity relationships.
    Journal of medicinal chemistry, 1989, Volume: 32, Issue:8

    Topics: Animals; Chemical Phenomena; Chemistry; Chickens; Drug Design; Folic Acid Antagonists; Lacticaseibacillus casei; Liver; Pyrimidines; Structure-Activity Relationship; X-Ray Diffraction

1989
Inhibition of chicken liver dihydrofolate reductase by 5-(substituted benzyl)-2,4-diaminopyrimidines. A quantitative structure-activity relationship and graphics analysis.
    Journal of medicinal chemistry, 1986, Volume: 29, Issue:5

    Topics: Animals; Chickens; Crystallography; Enzyme Inhibitors; Folic Acid Antagonists; Liver; Mathematics; Models, Molecular; Pyrimidines; Structure-Activity Relationship; Trimethoprim; X-Ray Diffraction

1986
Adaptive neuro-fuzzy inference system: an instant and architecture-free predictor for improved QSAR studies.
    Journal of medicinal chemistry, 2001, Aug-16, Volume: 44, Issue:17

    Topics: Algorithms; Folic Acid Antagonists; Multivariate Analysis; Pyrimidines; Quantitative Structure-Activity Relationship; Regression Analysis; Tetrahydrofolate Dehydrogenase

2001