tetrathiomolybdate has been researched along with molybdenum-cofactor* in 2 studies
2 other study(ies) available for tetrathiomolybdate and molybdenum-cofactor
Article | Year |
---|---|
Physiological and genetic analyses leading to identification of a biochemical role for the moeA (molybdate metabolism) gene product in Escherichia coli.
A unique class of chlorate-resistant mutants of Escherichia coli which produced formate hydrogenlyase and nitrate reductase activities only when grown in medium with limiting amounts of sulfur compounds was isolated. These mutants failed to produce the two molybdoenzyme activities when cultured in rich medium or glucose-minimal medium. The mutations in these mutants were localized in the moeA gene. Mutant strains with polar mutations in moeA which are also moeB did not produce active molybdoenzymes in any of the media tested. moeA mutants with a second mutation in either cysDNCJI or cysH gene lost the ability to produce active molybdoenzyme even when grown in medium limiting in sulfur compounds. The CysDNCJIH proteins along with CysG catalyze the conversion of sulfate to sulfide. Addition of sulfide to the growth medium of moeA cys double mutants suppressed the MoeA- phenotype. These results suggest that in the absence of MoeA protein, the sulfide produced by the sulfate activation/reduction pathway combines with molybdate in the production of activated molybdenum. Since hydrogen sulfide is known to interact with molybdate in the production of thiomolybdate, it is possible that the MoeA-catalyzed activated molybdenum is a form of thiomolybdenum species which is used in the synthesis of molybdenum cofactor from Mo-free molybdopterin. Topics: Bacterial Proteins; Chlorates; Cloning, Molecular; Coenzymes; DNA, Bacterial; Escherichia coli; Escherichia coli Proteins; Formate Dehydrogenases; Genetic Complementation Test; Glucose; Hydrogen Sulfide; Hydrogenase; Metalloproteins; Methyltransferases; Molybdenum; Molybdenum Cofactors; Multienzyme Complexes; Nitrate Reductase; Nitrate Reductases; Plasmids; Pteridines; Restriction Mapping; Sequence Deletion; Sulfates; Sulfides; Sulfotransferases; Sulfur; Sulfurtransferases | 1998 |
Elicitation of thiomolybdates from the iron-molybdenum cofactor of nitrogenase. Comparison with synthetic Fe-Mo-S complexes.
Aerial oxidation of the iron-molybdenum cofactor (FeMoco) of Azotobacter vinelandii nitrogenase has been shown to yield either the tetrathiomolybdate ion ([MoS4]2-) or the oxotrithiomolybdate ion ([MoOS3]2-), depending on the reaction conditions. Thus, when N-methylformamide (NMF) solutions of FeMoco either were titrated with measured aliquots of air or were diluted with air-saturated NMF, [MoOS3]2- was found to be the predominant product while dilution of NMF solutions of FeMoco with air-saturated methanol produced [MoS4]2- almost exclusively. Similar aerial oxidation of solutions of chemically synthesized Fe-Mo-S clusters showed that significant information about the molybdenum environment in these species could be deduced from the nature of the elicited thiomolybdates. The differences in decomposition products as a function of solvent are postulated to be due to the loss through precipitation of the reducing agent sodium dithionite on addition of methanol but not NMF. These overall decomposition results are discussed in the context of recent X-ray absorption spectroscopic data which suggest the presence of an 'MoS3' core in FeMoco. A possible mechanism whereby [MoS4]2- might be rapidly formed from this core is presented. Topics: Azotobacter; Coenzymes; Metalloproteins; Molybdenum; Molybdenum Cofactors; Nitrogenase; Oxidation-Reduction; Oxidoreductases; Pteridines; Spectrophotometry; Sulfur | 1986 |