tetramethylrhodamine has been researched along with methylglucoside* in 2 studies
2 other study(ies) available for tetramethylrhodamine and methylglucoside
Article | Year |
---|---|
Conformational dynamics of hSGLT1 during Na+/glucose cotransport.
This study examines the conformations of the Na(+)/glucose cotransporter (SGLT1) during sugar transport using charge and fluorescence measurements on the human SGLT1 mutant G507C expressed in Xenopus oocytes. The mutant exhibited similar steady-state and presteady-state kinetics as wild-type SGLT1, and labeling of Cys507 by tetramethylrhodamine-6-maleimide had no effect on kinetics. Our strategy was to record changes in charge and fluorescence in response to rapid jumps in membrane potential in the presence and absence of sugar or the competitive inhibitor phlorizin. In Na(+) buffer, step jumps in membrane voltage elicited presteady-state currents (charge movements) that decay to the steady state with time constants tau(med) (3-20 ms, medium) and tau(slow) (15-70 ms, slow). Concurrently, SGLT1 rhodamine fluorescence intensity increased with depolarizing and decreased with hyperpolarizing voltages (DeltaF). The charge vs. voltage (Q-V) and fluorescence vs. voltage (DeltaF-V) relations (for medium and slow components) obeyed Boltzmann relations with similar parameters: zdelta (apparent valence of voltage sensor) approximately 1; and V(0.5) (midpoint voltage) between -15 and -40 mV. Sugar induced an inward current (Na(+)/glucose cotransport), and reduced maximal charge (Q(max)) and fluorescence (DeltaF(max)) with half-maximal concentrations (K(0.5)) of 1 mM. Increasing [alphaMDG](o) also shifted the V(0.5) for Q and DeltaF to more positive values, with K(0.5)'s approximately 1 mM. The major difference between Q and DeltaF was that at saturating [alphaMDG](o), the presteady-state current (and Q(max)) was totally abolished, whereas DeltaF(max) was only reduced 50%. Phlorizin reduced both Q(max) and DeltaF(max) (K(i) approximately 0.4 microM), with no changes in V(0.5)'s or relaxation time constants. Simulations using an eight-state kinetic model indicate that external sugar increases the occupancy probability of inward-facing conformations at the expense of outward-facing conformations. The simulations predict, and we have observed experimentally, that presteady-state currents are blocked by saturating sugar, but not the changes in fluorescence. Thus we have isolated an electroneutral conformational change that has not been previously described. This rate-limiting step at maximal inward Na(+)/sugar cotransport (saturating voltage and external Na(+) and sugar concentrations) is the slow release of Na(+) from the internal surface of SGLT1. The high affinity bloc Topics: Animals; Computer Simulation; Electrophysiology; Ethyl Methanesulfonate; Fluorescence; Glucose; Humans; Kinetics; Membrane Potentials; Methylglucosides; Models, Chemical; Oocytes; Phlorhizin; Protein Conformation; Rhodamines; Sodium; Sodium-Glucose Transporter 1; Xenopus laevis | 2006 |
Coupled sodium/glucose cotransport by SGLT1 requires a negative charge at position 454.
Na(+)/glucose cotransport by SGLT1 is a tightly coupled process that is driven by the Na(+) electrochemical gradient across the plasma membrane. We have previously proposed that SGLT1 contains separate Na(+)- and glucose-binding domains, that A166 (in the Na(+) domain) is close to D454 (in the sugar domain), and that interactions between these residues influence sugar specificity and transport. We have now expressed the mutant D454C in Xenopus laevis oocytes and examined the role of charge on residue 454 by replacing the Asp with Cys or His, and by chemical mutation of D454C with alkylating reagents of different charge (MTSES(-), MTSET(+), MMTS(0), MTSHE(0), and iodoacetate(-)). Functional properties were examined by measuring sugar transport and cotransporter currents. In addition, D454C was labeled with fluorescent dyes and the fluorescence of the labeled transporter was recorded as a function of voltage and ligand concentration. The data shows that (1) aspartate 454 is critically important for the normal trafficking of the protein to the plasma membrane; (2) there were marked changes in the functional properties of D454C, i.e., a reduction in turnover number and a loss of voltage sensitivity, although there were no alterations in sugar selectivity or sugar and Na(+) affinity; (3) a negative charge on residue 454 increased Na(+) and sugar transport with a normal stoichiometry of 2 Na(+):1 sugar. A positive charge on residue 454, in contrast, uncoupled Na(+) and sugar transport, indicating the importance of the negative charge in the coordination of the cotransport mechanism. Topics: Animals; Aspartic Acid; Cell Membrane; Cysteine; Glucose; Histidine; Humans; Membrane Glycoproteins; Methylglucosides; Monosaccharide Transport Proteins; Mutagenesis, Site-Directed; Oocytes; Patch-Clamp Techniques; Protein Binding; Rhodamines; Sodium; Sodium-Glucose Transporter 1; Spectrometry, Fluorescence; Xenopus laevis | 2004 |