tetrahydrouridine has been researched along with 5-chloro-2--deoxycytidine* in 8 studies
8 other study(ies) available for tetrahydrouridine and 5-chloro-2--deoxycytidine
Article | Year |
---|---|
Analytical and pharmacokinetic studies with 5-chloro-2'-deoxycytidine.
5-Chloro-2'-deoxycytidine (NSC 371331, CDC) is in development as a possible radiosensitizing agent for cancer treatment. Previous studies have been done to demonstrate the in vivo efficacy of CDC with various modulators of its metabolism. This paper describes our preclinical studies to determine the pharmacokinetic properties of CDC and the disposition of the drug, both alone and in the presence of the metabolic modulator tetrahydrouridine (THU), a cytidine deaminase inhibitor. Detection of the drug in biological fluids was performed by HPLC analysis using a C-18 column, gradient elution with solvents composed of aqueous trifluoroacetic acid and acetonitrile, and ultraviolet absorbance at 290 nm. Samples were processed by treatment with ammonium sulfate prior to injection into the HPLC system. CDC was stable in aqueous solution and in mouse plasma. High doses of CDC (100mg/kg) were given i.v. or i.p. to mice for the determination of CDC plasma half-life (10 min). CDC was not detectable in plasma after oral administration. It was converted rapidly to 5-chloro-2'-deoxyuridine (CDU) by cytidine deaminase, and CDU was readily discernable in plasma and urine samples collected after i.v. and i.p. administration of CDC. When CDC in doses ranging from 5 to 100mg/kg was given with 100mg/kg of THU, increased plasma levels of CDC were seen. CDC was eliminated through the kidneys, as well as by enzymatic deamination, and did not bind to plasma proteins. The initial steps of the CDC metabolic pathway were determined in vitro with isolated enzymes. Cytidine deaminase from mouse kidney converted CDC into CDU; thymidine phosphorylase converted CDU into 5-chlorouracil (5-CU). The conclusions of these studies are: (a) CDC is a drug with a short half-life and (b) it is excreted through the kidney, mainly in metabolite form. Administration of THU substantially increased the concentrations of CDC in mouse plasma, supporting proposals that the combination of THU with CDC should be evaluated in clinical trials. Topics: Animals; Antimetabolites; Deoxycytidine; Drug Stability; Mice; Models, Animal; Tetrahydrouridine; Tissue Distribution | 2002 |
Five-chlorodeoxycytidine, a tumor-selective enzyme-driven radiosensitizer, effectively controls five advanced human tumors in nude mice.
The study's goals were as follows: (1) to extend our past findings with rodent tumors to human tumors in nude mice, (2) to determine if the drug protocol could be simplified so that only CldC and one modulator, tetrahydrouridine (H4U), would be sufficient to obtain efficacy, (3) to determine the levels of deoxycytidine kinase and dCMP deaminase in human tumors, compared to adjacent normal tissue, and (4) to determine the effect of CldC on normal tissue radiation damage to the cervical spinal cord of nude mice.. The five human tumors used were as follows: prostate tumors, PC-3 and H-1579; glioblastoma, SF-295; breast tumor, GI-101; and lung tumor, H-165. The duration of treatment was 3-5 weeks, with drugs administered on Days 1-4 and radiation on Days 3-5 of each week. The biomodulators of CldC were N-(Phosphonacetyl)-L-aspartate (PALA), an inhibitor of aspartyl transcarbamoylase, 5-fluorodeoxycytidine (FdC), resulting in tumor-directed inhibition of thymidylate synthetase, and H4U, an inhibitor of cytidine deaminase. The total dose of focused irradiation of the tumors was usually 45 Gy in 12 fractions.. Marked radiosensitization was obtained with CldC and the three modulators. The average days in tumor regrowth delay for X-ray compared to drugs plus X-ray, respectively, were: PC-3 prostate, 42-97; H-1579 prostate, 29-115; glioblastoma, 5-51; breast, 50-80; lung, 32-123. Comparative studies with PC-3 and H-1579 using CldC coadministered with H4U, showed that both PALA and FdC are dispensable, and the protocol can be simplified with equal and possibly heightened efficacy. For example, PC-3 with X-ray and (1) no drugs, (2) CldC plus the three modulators, (3) a high dose of CldC, and (4) escalating doses of CldC resulted in 0/10, 3/9, 5/10, and 6/9 cures, respectively. The tumor regrowth delay data followed a similar pattern. After treating mice only 11/2 weeks with CldC + H4U, 92% of the PC-3 tumor cells were found to possess CldU in their DNA. The great majority of head-and-neck tumors from patient material had markedly higher levels of dC kinase and dCMP deaminase than found in adjacent normal tissue. Physiologic and histologic studies showed that CldC + H4U combined with X-ray, focused on the cervical spinal cord, did not result in damage to that tissue.. 5-CldC coadministered with only H4U is an effective radiosensitizer of human tumors. Ninety-two percent of PC-3 tumor cells have been shown to take up ClUra derived from CldC in their DNA after only 11/2 weeks and 2 weeks of bolus i.p. injections. Enzymatic alterations that make tumors successful have been exploited for a therapeutic advantage. The great electronegativity, coupled with the relatively small Van der Waal radius of the Cl atom, may result in CldC's possessing the dual advantageous properties of FdC on one hand and BrdU and IdU on the other hand. These advantages include autoenhancing the incorporation of CldUTP into DNA by not only overrunning but also inhibiting the formation of competing TTP pools in tumors. A clinical trial is about to begin, with head-and-neck tumors as a first target of CldC radiosensitization. Topics: Animals; Breast Neoplasms; Carcinoma, Squamous Cell; Combined Modality Therapy; DCMP Deaminase; Deoxycytidine; Deoxycytidine Kinase; Female; Glioblastoma; Humans; Lung Neoplasms; Male; Mice; Mice, Nude; Neoplasm Proteins; Neoplasms; Prostatic Neoplasms; Radiation-Sensitizing Agents; Radiotherapy Dosage; Spinal Cord; Tetrahydrouridine | 2001 |
Five-chlorodeoxycytidine and biomodulators of its metabolism result in fifty to eighty percent cures of advanced EMT-6 tumors when used with fractionated radiation.
To extend our findings in previous radiation and biochemical studies with five rodent tumors, in which we used one and occasionally two or three irradiations. The extent of control of the EMT-6 mammary adenocarcinoma was determined using fractionated radiation (12 irradiations) over a 3-week period using the radiosensitizer 5-chloro-2'-deoxycytidine (CldC) and biomodulators of its metabolism: N-(Phosphonacetyl)-L-aspartate (PALA), tetrahydrouridine and 5-fluoro-2'-deoxycytidine (FdC).. Mammary adenocarcinoma EMT-6 tumors implanted 1 week prior to therapy in BALB/c mice were subjected to single daily doses of focused radiation, not exceeding a total of 60 Gy, on days 2-5 of each week. N-(Phosphonacetyl)-L-aspartate (PALA) was administered on the first day of therapy. Five-fluoro-2'-deoxycytidine and CldC were administered in the morning and afternoon, respectively, of the next 2 days, and CldC was administered on the fourth day. Tetrahydrouridine was always coadministered with FdC or CldC. Drug and radiation treatments overlapped for 3 weeks.. Fifty to 80% cures (usually 70%) were obtained with no apparent morbidity and the same moderate weight loss that occurs with radiation alone. Neither tumor regrowth delay nor cures were obtained with drugs or radiation alone. An apparent threefold dose increase effect was obtained with the end point: "days to reach 4 times initial tumor volume." Increasing the radiation dose threefold (without drugs) resulted in four out of five deaths; increasing the dose twofold (without drugs) resulted in extensive weight loss and hair loss in the entire ventral area and no cures. Increasing the dose of drugs or radiation 1.5-fold, in the complete protocol, did not result in increased morbidity. Comparative studies with Iododeoxyuridine demonstrate the heightened efficacy of CldC.. One cannot achieve the same results obtained with CldC and the modulators by merely increasing the dose of radiation. There is a significant window of safety in this approach. The evidence we have obtained with EMT-6, the fifth rodent tumor we have studied with CldC, as well as the demonstrated and proposed reasons for its superior efficacy over 5-Iododeoxyuridine (and 5-Bromodeoxyuridine), drugs in current use, indicate that CldC will allow more aggressive treatment of human tumors with radiation than is now feasible. Topics: Adenocarcinoma; Animals; Aspartic Acid; Body Weight; Deoxycytidine; Idoxuridine; Mammary Neoplasms, Experimental; Mice; Mice, Inbred BALB C; Phosphonoacetic Acid; Radiation-Sensitizing Agents; Radiotherapy Dosage; Tetrahydrouridine | 1995 |
Radiation, pool size and incorporation studies in mice with 5-chloro-2'-deoxycytidine.
Bolus doses of 5-chlorodeoxycytidine (CldC) administered with modulators of pyrimidine metabolism, followed by X-irradiation, resulted in a 2-fold dose increase effect against RIF-1 tumors in C3H mice. Pool size studies of the fate of [14C]-CldC in BDF1 mice bearing Sarcoma-180 tumors, which demonstrated the rapid formation of 5-chlorodeoxycytidylate (CldCMP), and incorporation of CldC as such in RIF-1 tumor DNA, indicate that CldC is a substrate for deoxycytidine kinase, as our past Km studies have shown. Our data indicate that 5-chlorodeoxyuridine triphosphate (CldUTP) accumulates from both the cytidine deaminase-thymidine kinase pathway, as well as from the deoxycytidine kinase-dCMP deaminase pathway, in tumor tissue. As shown in a previous study, tetrahydrouridine (H4U), a potent inhibitor of cytidine deaminase, can effectively inhibit the enzyme in the normal tissues of BDF1 mice. When H4U was administered with the modulators N-(phosphonacetyl)-L-aspartic acid (PALA) and 5-fluorodeoxycytidine (FdC), the levels of CldC-derived RNA and DNA directed metabolites increased in tumor and decreased in normal tissues compared to when CldC was administered alone. These modulators inhibit the de novo pathway of thymidine biosynthesis, lowering thymidine triphosphate (TTP) levels, which compete with CldUTP for incorporation into DNA. 5-Benzylacyclouridine (BAU), an inhibitor of uridine phosphorylase, was also utilized. DNA incorporation studies using C3H mice bearing RIF-1 tumors showed that the extent of incorporation of 5-chlorodeoxyuridine (CldU) into DNA correlates with the levels of cytidine and dCMP deaminases; this is encouraging in view of their high activity in many human malignancies and the low activities in normal tissues, including those undergoing active replication. Up to 3.9% replacement of thymidine by CldU took place in RIF-1 tumors, whereas incorporation into bone marrow was below our limit of detection. CldC did not result in photosensitization under conditions in cell culture in which radiosensitization to X rays was obtained. Thus, the combination of CldC with modulators of its metabolism has potential as a modality of selective radiosensitization for ultimate clinical use in a wider range of tumors than those of the brain. Topics: Animals; Aspartic Acid; Combined Modality Therapy; Cytidine Deaminase; Deoxycytidine; DNA, Neoplasm; Drug Therapy, Combination; Mice; Mice, Inbred C3H; Phosphonoacetic Acid; Radiation-Sensitizing Agents; Sarcoma, Experimental; Tetrahydrouridine; Uracil; Uridine Phosphorylase | 1990 |
Selective radiosensitization and cytotoxicity of human melanoma cells using halogenated deoxycytidines and tetrahydrouridine.
The halogenated pyrimidines 5-chloro-2'-deoxycytidine (CldCyd) and 5-bromo-2'-deoxycytidine (BrdCyd) can act as radiosensitizers and cytotoxic agents. It was hypothesized that tumor cells and normal cells might use different metabolic pathways to incorporate these halogenated deoxycytidines into DNA. This difference could potentially be exploited to produce selective radiosensitization and cytotoxicity of human tumor cells compared to normal human fibroblasts. This hypothesis was tested using two human melanoma cell lines and two normal fibroblast cell lines. Either CldCyd or BrdCyd alone caused both cytotoxicity and radiosensitization of tumor and normal cells. The addition of the cytidine deaminase inhibitor tetrahydrouridine (H4U) significantly protected the normal cells but had relatively little effect on the tumor cells. These data indicate that it may be possible to exploit differences between the pyrimidine metabolism of normal cells and melanoma cells to improve the therapeutic index of halogenated pyrimidines both as radiosensitizers and as cytotoxic agents. Topics: Antineoplastic Agents; Bromodeoxycytidine; Cell Line; Deoxycytidine; Fibroblasts; Humans; In Vitro Techniques; Melanoma; Radiation-Sensitizing Agents; Tetrahydrouridine; Tumor Cells, Cultured; Uridine | 1989 |
In vitro and in vivo radiation sensitization by the halogenated pyrimidine 5-chloro-2'-deoxycytidine.
5-Chloro-2'-deoxycytidine (Cld/Cyd) is hypothesized to have preferential incorporation into tumor DNA on the basis of elevated deoxycytidine-5'-phosphate deaminase and deoxycytidine kinase levels in tumors. Radiosensitization by Cld/Cyd was evaluated in exponentially growing Chinese hamster ovary cells by determining the ratio of radiation doses in control and treated cells to produce the same degree of cell killing (sensitizer enhancement ratio). Sensitizer enhancement ratios of 1.2-1.8 are seen at Cld/Cyd concentrations of 3-100 microM, 64 h incubation, and 200-600 cGy irradiation. Coincubation with tetrahydrouridine (H4Urd), a proposed inhibitor of Cld/Cyd catabolism by plasma cytidine deaminase resulted in no enhanced drug or radiation cytotoxicity. C3H mice given implants of RIF-1 tumors received 72-h continuous i.p. infusions of Cld/Cyd with or without H4Urd, or 5-bromo-2'-deoxyuridine (BrdUrd). Excised tumors were irradiated as single cell suspensions in vitro. Infusions of equimolar (0.4 mmol/kg/day) Cld/Cyd or BrdUrd resulted in greater radiosensitization by BrdUrd with no potentiation of Cld/Cyd by coinfusion with 0.8 mmol/kg/day H4Urd. Infusions with equitoxic doses of Cld/Cyd (0.8 mmol/kg/day) or BrdUrd (0.4 mmol/kg/day) yielded equal BrdUrd and Cld/Cyd sensitizer enhancement ratios of 1.6, without H4Urd potentiation of Cld/Cyd. Fluorescence-activated cell sorter analysis of tumor cell suspensions using a monoclonal antibody reactive with BrdUrd and Cld/Cyd disclosed a population of noncycling cells in tumors treated with Cld/Cyd/H4Urd that is not seen in tumors exposed to either BrdUrd or Cld/Cyd alone. Topics: Animals; Bromodeoxyuridine; Cell Survival; Cells, Cultured; Cricetinae; Cricetulus; Deoxycytidine; Female; Flow Cytometry; Mice; Mice, Inbred C3H; Neoplasms, Experimental; Radiation-Sensitizing Agents; Tetrahydrouridine | 1986 |
Sensitization to X ray by 5-chloro-2'-deoxycytidine co-administered with tetrahydrouridine in several mammalian cell lines and studies of 2'-chloro derivatives.
5-Chloro-2'-deoxycytidine (CldC) + tetrahydrouridine (H4U) sensitizes mammalian cells (HEp-2, RIF-1, S-180) to X ray. This sensitization, as demonstrated previously with HEp-2 cells, is heightened when cells are pre-incubated with inhibitors of pyrimidine synthesis. CHO cells, which intrinsically lack both cytidine deaminase (CD) and deoxycytidylate deaminase (dCMPD), are sensitized to X ray by 5-chlorodeoxyuridine (CldU) but display no significant sensitization with CldC + H4U. The presence and level of these deaminases appears to correlate with X ray sensitization in cell culture. From experiments in cell culture, it can be inferred that one pathway of conversion, deoxycytidine kinase----dCMPD, or CD----thymidine kinase, may be sufficient for metabolizing CldC to a radiosensitizer. However, if both pathways are blocked, as in CHO cells, no X ray sensitization results. In addition to HEp-2 cells, which are extremely elevated in both CD and dCMPD activities, we have examined the sensitization of S-180 and RIF-1 cells to X ray by CldC + H4U. Both cell lines possess an enzymatic profile consistent with their sensitization to X ray by CldC + H4U. Dose enhancement ratios of 1.5 to 1.9 for cells treated with CldC + H4U and ratios of 2.0-2.7 for cells pre-treated with inhibitors of pyrimidine synthesis prior to CldC + H4U have been obtained. Based on reports of the marked X ray sensitization of bacteria by 2'-chloro-2'-deoxythymidine, we obtained 2',5-dichloro-2'-deoxycytidine and 5-bromo-2'-chloro-2-deoxyuridine and found these analogs to be X ray sensitizers of mammalian cells. The strategy that we propose with CldC + H4U and the related 2'-chloro derivatives, based on the elevation of CD and dCMPD in human tumors, offers a degree of selectivity that is not necessarily related to differences in cell kinetics; such that malignancies other than brain tumors may be amenable to this therapy. Topics: Animals; Bromodeoxyuridine; Cell Line; Cell Survival; Deoxycytidine; Drug Combinations; Humans; In Vitro Techniques; Radiation-Sensitizing Agents; Tetrahydrouridine; Uridine | 1986 |
Marked radiosensitization of cells in culture to X ray by 5-chlorodeoxycytidine coadministered with tetrahydrouridine, and inhibitors of pyrimidine biosynthesis.
Our approach to overcome the problem of rapid catabolism and general toxicity encountered with 5-halogenated analogues of deoxyuridine (5-bromo, chloro or iododeoxyuridine), which has limited their use as tumor radiosensitizers, is to utilize 5-chlorodeoxycytidine (CldC) with tetrahydrouridine (H4U). We propose that CldC, coadministered with H4U, is metabolized in the following manner: CldC----CldCMP----CldUMP---- ----CldUTP----DNA. All the enzymes of this pathway are elevated in many human malignant tumors and in HEp-2 cells. In X irradiation studies with HEp-2 cells, limited to 1 or 2 radiation doses, we have obtained 3.0 to 3.8 apparent dose enhancement ratios (these represent upper limits) when cells are preincubated with inhibitors of pyrimidine biosynthesis: N-(Phosphonacetyl)-L-aspartate (PALA) and 5-fluorodeoxyuridine (FdU) or 5-fluorodeoxycytidine (FdC) + H4U. Optimum conditions for radiosensitization are: PALA (0.1 mg/ml) 18-20 hr prior to FdU (0.1 microM) or FdC (0.02 microM) + H4U (0.1 mM) followed 6 hr later by CldC (0.1-0.2 mM) + H4U (0.1 mM) for 56-68 hr. Viabilities of 10 +/- 4% to 15 +/- 1% (+/- S.E.) were obtained for drug-treated unirradiated cells. Enzymatic studies indicate that this toxicity may be tumor selective. CldC + H4U alone (at these concentrations) results in 20% substitution of CldU for thymidine in DNA (determined by HPLC analysis). Preliminary toxicity studies indicate that mice will tolerate treatment protocols involving a single dose of PALA (200 mg/kg) followed by a dose of FdU (50 mg/kg) and 3 cycles of CldC (500 mg/kg) + H4U (100 mg/kg) at 10 hour intervals, with marginal weight loss (4%). In this approach we seek to obtain preferential conversion of CldC to CldUTP at the tumor site by taking advantage of quantitative differences in enzyme levels between tumors and normal tissues. Topics: Animals; Aspartic Acid; Carcinoma, Squamous Cell; Cell Line; Cell Survival; Deoxycytidine; Dose-Response Relationship, Radiation; Floxuridine; Humans; Laryngeal Neoplasms; Mice; Organophosphorus Compounds; Phosphonoacetic Acid; Radiation-Sensitizing Agents; Tetrahydrouridine; Uridine | 1984 |