Page last updated: 2024-08-23

tetradecanoylphorbol acetate and taxifolin

tetradecanoylphorbol acetate has been researched along with taxifolin in 6 studies

Research

Studies (6)

TimeframeStudies, this research(%)All Research%
pre-19901 (16.67)18.7374
1990's1 (16.67)18.2507
2000's3 (50.00)29.6817
2010's1 (16.67)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Bellows, DS; Clarke, ID; Diamandis, P; Dirks, PB; Graham, J; Jamieson, LG; Ling, EK; Sacher, AG; Tyers, M; Ward, RJ; Wildenhain, J1
Austin, CP; Fidock, DA; Hayton, K; Huang, R; Inglese, J; Jiang, H; Johnson, RL; Su, XZ; Wellems, TE; Wichterman, J; Yuan, J1
Batista-Gonzalez, A; Brunhofer, G; Fallarero, A; Gopi Mohan, C; Karlsson, D; Shinde, P; Vuorela, P1
'T Hart, BA; Ip Via Ching, TR; Labadie, RP; Van Dijk, H1
Drzewiecki, G; Fujiki, H; Middleton, E; Savliwala, M1
Ueda, H; Yamazaki, C; Yamazaki, M1

Other Studies

6 other study(ies) available for tetradecanoylphorbol acetate and taxifolin

ArticleYear
Chemical genetics reveals a complex functional ground state of neural stem cells.
    Nature chemical biology, 2007, Volume: 3, Issue:5

    Topics: Animals; Cell Survival; Cells, Cultured; Mice; Molecular Structure; Neoplasms; Neurons; Pharmaceutical Preparations; Sensitivity and Specificity; Stem Cells

2007
Genetic mapping of targets mediating differential chemical phenotypes in Plasmodium falciparum.
    Nature chemical biology, 2009, Volume: 5, Issue:10

    Topics: Animals; Antimalarials; ATP Binding Cassette Transporter, Subfamily B, Member 1; Chromosome Mapping; Crosses, Genetic; Dihydroergotamine; Drug Design; Drug Resistance; Humans; Inhibitory Concentration 50; Mutation; Plasmodium falciparum; Quantitative Trait Loci; Transfection

2009
Exploration of natural compounds as sources of new bifunctional scaffolds targeting cholinesterases and beta amyloid aggregation: the case of chelerythrine.
    Bioorganic & medicinal chemistry, 2012, Nov-15, Volume: 20, Issue:22

    Topics: Acetylcholinesterase; Amyloid beta-Peptides; Benzophenanthridines; Binding Sites; Butyrylcholinesterase; Catalytic Domain; Cholinesterase Inhibitors; Humans; Isoquinolines; Kinetics; Molecular Docking Simulation; Structure-Activity Relationship

2012
How flavonoids inhibit the generation of luminol-dependent chemiluminescence by activated human neutrophils.
    Chemico-biological interactions, 1990, Volume: 73, Issue:2-3

    Topics: Anti-Inflammatory Agents, Non-Steroidal; Calcimycin; Flavanones; Flavonoids; Flavonols; Hesperidin; Humans; Luminescent Measurements; Luminol; Luteolin; Neutrophils; Oxygen; Peroxidase; Pyridazines; Quercetin; Superoxides; Tetradecanoylphorbol Acetate; Xanthine Oxidase

1990
Tumor promoter-induced basophil histamine release: effect of selected flavonoids.
    Biochemical pharmacology, 1987, Jun-15, Volume: 36, Issue:12

    Topics: Basophils; Chalcone; Flavones; Flavonoids; Flavonols; Histamine Release; Humans; Luteolin; Lyngbya Toxins; Quercetin; Structure-Activity Relationship; Tetradecanoylphorbol Acetate

1987
A hydroxyl group of flavonoids affects oral anti-inflammatory activity and inhibition of systemic tumor necrosis factor-alpha production.
    Bioscience, biotechnology, and biochemistry, 2004, Volume: 68, Issue:1

    Topics: Administration, Oral; Animals; Anthocyanins; Anti-Inflammatory Agents; Apigenin; Cells, Cultured; Ear, External; Edema; Flavonoids; Flavonols; Lipopolysaccharides; Luteolin; Macrophages, Peritoneal; Male; Mice; Mice, Inbred ICR; Quercetin; Structure-Activity Relationship; Tetradecanoylphorbol Acetate; Tumor Necrosis Factor-alpha

2004