tetracycline and ruthenium-dioxide

tetracycline has been researched along with ruthenium-dioxide* in 2 studies

Other Studies

2 other study(ies) available for tetracycline and ruthenium-dioxide

ArticleYear
Application of response surface methodology to the removal of the antibiotic tetracycline by electrochemical process using carbon-felt cathode and DSA (Ti/RuO2-IrO2) anode.
    Chemosphere, 2012, Volume: 87, Issue:6

    The removal of antibiotic tetracycline (TC) from water by electrochemical advanced oxidation process (EAOP) was performed using a carbon-felt cathode and a DSA (Ti/RuO(2)-IrO(2)) anode. The influence of applied current, initial pH and initial TC concentration on TC removal efficiency was investigated. Response surface methodology (RSM) based on Box-Behnken statistical experiment design (BBD) was applied to analyze the experimental variables. The positive and negative effects of variables and the interaction between variables on TC removal efficiency were determined. The applied current showed positive effect, while the initial pH value and initial tetracycline concentration gave negative effect on TC removal. The interaction between applied current and initial pH value was significant, while the interactions of initial TC concentration with applied current or initial pH were not pronounced. The results of adequacy check confirmed that the proposed models were accurate and reliable to analyze the variables of EAOP. The reaction intermediates were identified by high-performance liquid chromatography-mass spectrometry (LC-MS) technique and a plausible degradation pathway for tetracycline degradation was proposed. The acute toxicity experiments illustrated that the Daphnia magna immobilization rate reached the maximum after 240 min of electrolysis and then decreased with the progress of the reaction.

    Topics: Anti-Bacterial Agents; Biological Oxygen Demand Analysis; Carbon; Carbon Fiber; Electrodes; Environmental Restoration and Remediation; Iridium; Models, Chemical; Ruthenium Compounds; Tetracycline; Titanium; Water Pollutants, Chemical

2012
Electrocatalytic tetracycline oxidation at a mixed-valent ruthenium oxide--ruthenium cyanide-modified glassy carbon electrode and determination of tetracyclines by liquid chromatography with electrochemical detection.
    Analytical chemistry, 2004, Apr-15, Volume: 76, Issue:8

    Mixed-valent films of ruthenium oxide-ruthenium cyanide were electrodeposited onto glassy carbon and characterized for the electrocatalytic oxidation of tetracycline. The currents produced by tetracycline were higher than from previously reported electrode modifications or pretreatments. In H(2)SO(4) pH 1.0 + 0.5 M K(2)SO(4), the second-order rate constant for the reaction between tetracycline and the Ru(III/IV) couple of ruthenium oxide was 3 x 10(5) +/- 1 x 10(5) mol(-1) cm(3) s(-1), and the rate of charge diffusion through the films was 4.5 x 10(-7) +/- 3.5 x 10(-7) cm(2) s(-1). Reaction was localized at the film-solution interface. When used as detectors in liquid chromatography (in H(3)PO(4) pH 2.5 + 0.1 M KH(2)PO(4) + 20% CH(3)CN, E = 1.10 V vs SCE), the electrodes gave limits of detection (>3 S/N) of 0.1 ppm for tetracycline and oxytetracycline and 0.5 ppm for doxycycline and chlorotetracycline. These limits were suitable for FDA and Codex Alimentarius guidelines for tetracyclines in food. Recoveries of the four tetracyclines from sea and freshwater shrimp were in the range 73-111%, which was higher or similar to the previously reported recoveries from shrimp.

    Topics: Carbon; Catalysis; Chromatography, High Pressure Liquid; Cyanides; Decapoda; Electrochemistry; Electrodes; Food Contamination; Glass; Oxidation-Reduction; Ruthenium Compounds; Sensitivity and Specificity; Tetracycline

2004