tetracosahexaenoic-acid and tetracosapentaenoic-acid

tetracosahexaenoic-acid has been researched along with tetracosapentaenoic-acid* in 6 studies

Trials

1 trial(s) available for tetracosahexaenoic-acid and tetracosapentaenoic-acid

ArticleYear
Increases in plasma n-3 tetracosapentaenoic acid and tetracosahexaenoic acid following 12 weeks of EPA, but not DHA, supplementation in women and men.
    Prostaglandins, leukotrienes, and essential fatty acids, 2022, Volume: 185

    Dietary feeding and stable isotope studies in rodents support that the 24-carbon omega-3 polyunsaturated fatty acids, tetracosapentaenoic acid (24:5n-3, TPAn-3) and tetracosahexaenoic acid (24:6n-3, THA), are immediate precursors to docosahexaenoic acid (DHA, 22:6n-3). In this study, we assessed for the first time, changes in TPAn-3 or THA levels following omega-3 PUFA supplementation in humans, providing insight into human omega-3 PUFA metabolism. In this secondary analysis of a double-blind randomized control trial, women and men (19 - 30 years, n = 10 - 14 per sex, per diet) were supplemented with 3 g/day EPA, DHA, or olive oil control for 12 weeks. Plasma TPAn-3 and THA concentrations were determined by gas chromatography-mass spectrometry to determine changes following supplementation in a sex-specific manner (sex x time). EPA supplementation significantly increased (p < 0.0001) plasma TPAn-3 by 215% (1.3 ± 0.1 - 4.1 ± 0.7, nmol/mL ± SEM) and THA by 112% (1.7 ± 0.2 - 3.6 ± 0.5, nmol/mL ± SEM). Furthermore, women had 111% and 99% higher plasma TPAn-3 and THA in the EPA supplemented group compared to men (p < 0.0001). There were no significant effects of time on plasma TPAn-3 or THA concentrations in the DHA supplemented or olive oil supplemented groups. In conclusion, EPA, but not DHA, supplementation in humans increased plasma TPAn-3 and THA levels, suggesting that THA accumulates prior to conversion to DHA in the n-3 PUFA synthesis pathway. Furthermore, women generally exhibit higher plasma TPAn-3 and THA concentrations compared with men, suggesting that women have a greater ability to accumulate 24-carbon n-3 PUFA in plasma via EPA and DPAn-3 elongation, which may explain the known higher DHA levels in women. Summary: In this secondary analysis of a double-blind randomized control trial, we assessed changes in omega-3 (n-3) tetracosapentaenoic acid (24:5n-3, TPAn-3) and tetracosahexaenoic acid (24:6n-3, THA) plasma levels in women and men (19 - 30 years, n = 10 - 14 per sex, per diet) following 12-weeks of n-3 PUFA supplementation (3 g/day EPA, DHA or olive oil). Women had higher plasma TPAn-3 in all supplementation groups and higher THA levels in the EPA and olive oil groups (p < 0.0001) compared to men. EPA supplementation increased (p < 0.0001) plasma TPAn-3 by 215% (1.3 ± 0.1 - 4.1 ± 0.7, nmol/mL ± SEM) and THA by 112% (1.7 ± 0.2 - 3.6 ± 0.5, nmol/mL ± SEM), but DHA supplementation had no effect. For the first time in humans, we show that plasm

    Topics: Carbon; Dietary Supplements; Docosahexaenoic Acids; Eicosapentaenoic Acid; Fatty Acids, Omega-3; Female; Humans; Male; Olive Oil

2022

Other Studies

5 other study(ies) available for tetracosahexaenoic-acid and tetracosapentaenoic-acid

ArticleYear
Serum n-3 Tetracosapentaenoic Acid and Tetracosahexaenoic Acid Increase Following Higher Dietary α-Linolenic Acid but not Docosahexaenoic Acid.
    Lipids, 2017, Volume: 52, Issue:2

    n-3 Tetracosapentaenoic acid (24:5n-3, TPAn-3) and tetracosahexaenoic acid (24:6n-3, THA) are believed to be important intermediates to docosahexaenoic acid (DHA, 22:6n-3) synthesis. The purpose of this study is to report for the first time serum concentrations of TPAn-3 and THA and their response to changing dietary α-linolenic acid (18:3n-3, ALA) and DHA. The responses will then be used in an attempt to predict the location of these fatty acids in relation to DHA in the biosynthetic pathway. Male Long Evans rats (n = 6 per group) were fed either a low (0.1% of total fatty acids), medium (3%) or high (10%) ALA diet with no added DHA, or a low (0%), medium (0.2%) or high (2%) DHA diet with a background of 2% ALA for 8 weeks post-weaning. Serum n-3 and n-6 polyunsaturated fatty acid (PUFA) concentrations (nmol/mL ± SEM) were determined by gas chromatography-mass spectrometry. Serum THA increases from low (0.3 ± 0.1) to medium (5.8 ± 0.7) but not from medium to high (4.6 ± 0.9) dietary ALA, while serum TPAn-3 increases with increasing dietary ALA from 0.09 ± 0.04 to 0.70 ± 0.09 to 1.23 ± 0.14 nmol/mL. Following DHA feeding, neither TPAn-3 or THA change across all dietary DHA intake levels. Serum TPAn-3 demonstrates a similar response to dietary DHA. In conclusion, this is the first study to demonstrate that increases in dietary ALA but not DHA increase serum TPAn-3 and THA in rats, suggesting that both fatty acids are precursors to DHA in the biosynthetic pathway.

    Topics: alpha-Linolenic Acid; Animals; Biosynthetic Pathways; Docosahexaenoic Acids; Gas Chromatography-Mass Spectrometry; Male; Rats; Rats, Long-Evans

2017
Effect of the delta6-desaturase inhibitor SC-26196 on PUFA metabolism in human cells.
    Lipids, 2003, Volume: 38, Issue:4

    The objective of this study was to determine the effect of 2,2-diphenyl-5-(4-[[(1 E)-pyridin-3-yl-methylidene]amino]piperazin-1-yl)pentanenitrile (SC-26196), a delta6-desaturase inhibitor, on PUFA metabolism in human cells. SC-26196 inhibited the desaturation of 2 microM [1-14C] 18:2n-6 by 87-95% in cultured human skin fibroblasts, coronary artery smooth muscle cells, and astrocytes. By contrast, SC-26196 did not affect the conversion of [1-14C]20:3n-6 to 20:4 in the fibroblasts, demonstrating that it is selective for delta6-desaturase. The IC50 values for inhibition of the desaturation of 2 microM [1-14C] 18:3n-3 and [3-14C]24:5n-3 in the fibroblasts, 0.2-0.4 microM, were similar to those for the inhibition of [1-14C 18:2n-6 desaturation, and the rates of recovery of [1-14C]18:2n-6 and [3-14C]24:5n-3 desaturation after removal of SC-26196 from the culture medium also were similar. SC-26196 reduced the conversion of [3-14C]22:5n-3 and [3-14C]24:5n-3 to DHA by 75 and 84%, respectively, but it had no effect on the retroconversion of [3-14C]24:6n-3 to DHA. These results demonstrate that SC-26196 effectively inhibits the desaturation of 18- and 24-carbon PUFA and, therefore, decreases the synthesis of arachidonic acid, EPA, and DHA in human cells. Furthermore, they provide additional evidence that the conversion of 22:5n-3 to DHA involves delta6-desaturation.

    Topics: Carbon Radioisotopes; Cell Line; Docosahexaenoic Acids; Enzyme Inhibitors; Fatty Acid Desaturases; Fatty Acids, Unsaturated; Humans; Linoleic Acid; Piperazines; Stearoyl-CoA Desaturase; Time Factors

2003
Effects of docosahexaenoic (22:6n-3), tetracosapentaenoic (24:5n-3) and tetracosahexaenoic (24:6n-3) acids on the desaturation and elongation of n-3 polyunsaturated fatty acids in trout liver microsomes.
    Biochimica et biophysica acta, 1998, Jun-15, Volume: 1392, Issue:2-3

    The effects of long chain n-3 polyunsaturated fatty acids (PUFA) on the desaturation and elongation systems involved in the conversion of 18:3n-3 to 24:6n-3 were investigated. Microsomes were prepared from the livers of rainbow trout and incubated with 14C-labelled 18:3n-3 and cofactors required for elongation and/or desaturation in the presence of 22:6n-3, 24:5n-3 or 24:6n-3. The formation of 24:6n-3 was significantly inhibited in the presence of 50 microM 22:6n-3, 24:5n-3 or 24:6n-3, whereas the amount of radiolabelled 20:5n-3 formed was inhibited by only 24:5n-3 or 24:6n-3 at the same concentration. When malonyl-CoA was omitted from the incubation system to allow the measurement of desaturation in the absence of elongation, the Delta6 desaturation of 14C-18:3n-3 to 14C-18:4n-3 was inhibited by approximately 25% in the presence of 24:5n-3 or 24:6n-3 but was not affected by 22:6n-3. The Delta5 desaturation of 14C-20:4n-3 was not affected by the presence of any of the long chain PUFA and no significant effect of 18:3n-3, 22:6n-3 or 24:6n-3 on the Delta6 desaturation of 24:5n-3 to 24:6n-3 was observed. To permit the measurement of individual elongation reactions, KCN was included in the incubation medium to inhibit desaturation and 14C-labelled 18:3n-3, 18:4n-3, 20:4n-3, 20:5n-3 and 22:5n-3 were examined as substrates. 18:4n-3 and 22:5n-3 were more extensively used for elongation than 18:3n-3, 20:4n-3 and 20:5n-3. The presence of 22:6n-3, 24:5n-3 or 24:6n-3 in the incubation system had no effect on any of the specific elongations of any of the substrates examined. It is concluded that, in the conversion of 18:3n-3 to 24:6n-3 by trout liver microsomes, the Delta6 desaturation of 18:3n-3 may be subjected to direct feedback inhibition and that 24:5n-3 may be preferred over 18:3n-3 as a substrate for Delta6 desaturation.

    Topics: Animals; Docosahexaenoic Acids; Fatty Acid Desaturases; Fatty Acids, Omega-3; Microsomes, Liver; Oleic Acid; Oncorhynchus mykiss; Potassium Cyanide

1998
Phospholipid fatty acid composition of gorgonians of the genus Pseudopterogorgia: identification of tetracosapolyenoic acids.
    Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology, 1996, Volume: 113, Issue:4

    The phospholipid fatty acid composition of the Caribbean gorgonians Pseudopterogorgia acerosa (Pallas), Pseudopterogorgia americana (Gmelin), Pseudopterogorgia bipinnata (Verrill) and Pseudopterogorgia rigida (Bielschowsky) is described for the first time. The main phospholipids identified were phosphatidylethanolamine, phosphatidylcholine and phosphatidylserine. All four gorgonians presented a similar phospholipid fatty acid composition. The main fatty acids were 16:0, 18:3(n-6), 18:4(n-3), 20:4(n-6), 22:6(n-3), 24:5(n-6) and 24:6(n-3). In all of the studied Pseudopterogorgia gorgonians, high amounts of the tetracosapolyenoic fatty acids 24:5(n-6) and 24:6(n-3) were identified. In the four gorgonians studied, n-6 polyunsaturated fatty acids predominated. These results suggest that the occurrence of tetracosapolyenoic fatty acids in the Gorgoniidae is more general than previously recognized.

    Topics: Animals; Cnidaria; Docosahexaenoic Acids; Fatty Acids; Phosphatidylcholines; Phosphatidylethanolamines; Phosphatidylserines; Phospholipids

1996
Docosahexaenoic acid synthesis in human skin fibroblasts involves peroxisomal retroconversion of tetracosahexaenoic acid.
    Journal of lipid research, 1995, Volume: 36, Issue:11

    The purpose of this study was to determine whether the formation of docosahexaenoic acid in human cells occurs through a pathway that involves 24-carbon n-3 fatty acid intermediates and retroconversion. Normal human skin fibroblasts synthesized radiolabeled docosahexaenoic acid from [1-(14)C]18:3n-3, [3-(14)C]22:5n-3, [3-(14)C]24:5n-3, and [3-(14)C]24:6n-3. The amount of docosahexaenoate formed was reduced in fibroblasts defective in peroxisomal biogenesis, by 90-100% in Zellweger's syndrome and by 50-75% in infantile Refsum's disease. Fatty acid elongation and desaturation were intact in these mutant cells. No decrease in radiolabeled docosahexaenoic acid production occurred in mutant fibroblasts defective in peroxisomal alpha-oxidation or mitochondrial beta-oxidation, or in normal fibroblasts treated with methyl palmoxirate to inhibit mitochondrial beta-oxidation. Therefore, the retroconversion step in docosahexaenoic acid formation occurs through peroxisomal beta-oxidation in normal human cells. These results demonstrate that the pathway for docosahexaenoic acid synthesis in human cells involves 24-carbon intermediates. The limited ability to synthesize docosahexaenoic acid may underlie some of the pathology that occurs in genetic diseases involving peroxisomal beta-oxidation.

    Topics: alpha-Linolenic Acid; Cells, Cultured; Docosahexaenoic Acids; Fatty Acids, Omega-3; Fatty Acids, Unsaturated; Fibroblasts; Humans; Microbodies; Mutation; Oxidation-Reduction; Reference Values; Skin; Zellweger Syndrome

1995