Page last updated: 2024-08-16

terfenadine and trifluoperazine

terfenadine has been researched along with trifluoperazine in 8 studies

Research

Studies (8)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's4 (50.00)29.6817
2010's4 (50.00)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Strassburg, CP; Tukey, RH1
Casciano, CN; Clement, RP; Johnson, WW; Wang, EJ1
Benz, RD; Contrera, JF; Kruhlak, NL; Matthews, EJ; Weaver, JL1
Bleich, S; Gulbins, E; Kornhuber, J; Reichel, M; Terfloth, L; Tripal, P; Wiltfang, J1
García-Mera, X; González-Díaz, H; Prado-Prado, FJ1
Fisk, L; Greene, N; Naven, RT; Note, RR; Patel, ML; Pelletier, DJ1
Ekins, S; Williams, AJ; Xu, JJ1
Cantin, LD; Chen, H; Kenna, JG; Noeske, T; Stahl, S; Walker, CL; Warner, DJ1

Reviews

1 review(s) available for terfenadine and trifluoperazine

ArticleYear
Human UDP-glucuronosyltransferases: metabolism, expression, and disease.
    Annual review of pharmacology and toxicology, 2000, Volume: 40

    Topics: Autoimmunity; Chromosome Mapping; Glucuronides; Glucuronosyltransferase; Humans; Hyperbilirubinemia; Neoplasms; Steroids; Terminology as Topic

2000

Other Studies

7 other study(ies) available for terfenadine and trifluoperazine

ArticleYear
Active transport of fluorescent P-glycoprotein substrates: evaluation as markers and interaction with inhibitors.
    Biochemical and biophysical research communications, 2001, Nov-30, Volume: 289, Issue:2

    Topics: 3T3 Cells; Adrenergic Uptake Inhibitors; Animals; ATP Binding Cassette Transporter, Subfamily B, Member 1; Binding Sites; Biological Transport, Active; Cell Line; Cell Separation; Cell Survival; Flow Cytometry; Fluorescent Dyes; Humans; Inhibitory Concentration 50; Mice; Protein Binding; Reserpine; Spectrometry, Fluorescence; Substrate Specificity; Time Factors

2001
Assessment of the health effects of chemicals in humans: II. Construction of an adverse effects database for QSAR modeling.
    Current drug discovery technologies, 2004, Volume: 1, Issue:4

    Topics: Adverse Drug Reaction Reporting Systems; Artificial Intelligence; Computers; Databases, Factual; Drug Prescriptions; Drug-Related Side Effects and Adverse Reactions; Endpoint Determination; Models, Molecular; Quantitative Structure-Activity Relationship; Software; United States; United States Food and Drug Administration

2004
Identification of new functional inhibitors of acid sphingomyelinase using a structure-property-activity relation model.
    Journal of medicinal chemistry, 2008, Jan-24, Volume: 51, Issue:2

    Topics: Algorithms; Animals; Cell Line; Cell Line, Tumor; Chemical Phenomena; Chemistry, Physical; Enzyme Inhibitors; Humans; Hydrogen-Ion Concentration; Molecular Conformation; Quantitative Structure-Activity Relationship; Rats; Sphingomyelin Phosphodiesterase

2008
Multi-target spectral moment QSAR versus ANN for antiparasitic drugs against different parasite species.
    Bioorganic & medicinal chemistry, 2010, Mar-15, Volume: 18, Issue:6

    Topics: Antiparasitic Agents; Molecular Structure; Neural Networks, Computer; Parasitic Diseases; Quantitative Structure-Activity Relationship; Species Specificity; Thermodynamics

2010
Developing structure-activity relationships for the prediction of hepatotoxicity.
    Chemical research in toxicology, 2010, Jul-19, Volume: 23, Issue:7

    Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Humans; Structure-Activity Relationship; Tetracyclines; Thiophenes

2010
A predictive ligand-based Bayesian model for human drug-induced liver injury.
    Drug metabolism and disposition: the biological fate of chemicals, 2010, Volume: 38, Issue:12

    Topics: Bayes Theorem; Chemical and Drug Induced Liver Injury; Humans; Ligands

2010
Mitigating the inhibition of human bile salt export pump by drugs: opportunities provided by physicochemical property modulation, in silico modeling, and structural modification.
    Drug metabolism and disposition: the biological fate of chemicals, 2012, Volume: 40, Issue:12

    Topics: Animals; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Bile Acids and Salts; Cell Line; Chemical and Drug Induced Liver Injury; Humans; Quantitative Structure-Activity Relationship

2012