Page last updated: 2024-08-16

terfenadine and sulfaphenazole

terfenadine has been researched along with sulfaphenazole in 5 studies

Research

Studies (5)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's1 (20.00)29.6817
2010's4 (80.00)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Bellows, DS; Clarke, ID; Diamandis, P; Dirks, PB; Graham, J; Jamieson, LG; Ling, EK; Sacher, AG; Tyers, M; Ward, RJ; Wildenhain, J1
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A1
Artursson, P; Haglund, U; Karlgren, M; Kimoto, E; Lai, Y; Norinder, U; Vildhede, A; Wisniewski, JR1
Chen, CH; De Clercq, E; Feng, D; Ginex, T; Kang, D; Lee, KH; Liu, X; Luque, FJ; Murugan, NA; Pannecouque, C; Steitz, TA; Wang, Z; Wei, F; Wu, G; Yang, Y; Zhan, P; Zhang, H; Zhang, J; Zhao, T1
Adebesin, AM; Falck, JR; Fischer, R; Konkel, A; Lossie, J; Paudyal, MP; Puli, N; Schunck, WH; Vijaykumar, J; Wesser, T; Westphal, C; Zhu, C1

Other Studies

5 other study(ies) available for terfenadine and sulfaphenazole

ArticleYear
Chemical genetics reveals a complex functional ground state of neural stem cells.
    Nature chemical biology, 2007, Volume: 3, Issue:5

    Topics: Animals; Cell Survival; Cells, Cultured; Mice; Molecular Structure; Neoplasms; Neurons; Pharmaceutical Preparations; Sensitivity and Specificity; Stem Cells

2007
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
    Chemical research in toxicology, 2010, Volume: 23, Issue:1

    Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship

2010
Classification of inhibitors of hepatic organic anion transporting polypeptides (OATPs): influence of protein expression on drug-drug interactions.
    Journal of medicinal chemistry, 2012, May-24, Volume: 55, Issue:10

    Topics: Atorvastatin; Biological Transport; Drug Interactions; Estradiol; Estrone; HEK293 Cells; Heptanoic Acids; Humans; Hydroxymethylglutaryl-CoA Reductase Inhibitors; In Vitro Techniques; Least-Squares Analysis; Liver; Liver-Specific Organic Anion Transporter 1; Models, Molecular; Multivariate Analysis; Organic Anion Transporters; Organic Anion Transporters, Sodium-Independent; Protein Isoforms; Pyrroles; Solute Carrier Organic Anion Transporter Family Member 1B3; Structure-Activity Relationship; Transfection

2012
Identification of Dihydrofuro[3,4- d]pyrimidine Derivatives as Novel HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitors with Promising Antiviral Activities and Desirable Physicochemical Properties.
    Journal of medicinal chemistry, 2019, 02-14, Volume: 62, Issue:3

    Topics: Animals; Anti-HIV Agents; Binding Sites; Cell Line, Tumor; Furans; HIV Reverse Transcriptase; HIV-1; Humans; Male; Microbial Sensitivity Tests; Molecular Dynamics Simulation; Molecular Structure; Pyrimidines; Rats, Wistar; Reverse Transcriptase Inhibitors; Structure-Activity Relationship

2019
Development of Robust 17(
    Journal of medicinal chemistry, 2019, 11-27, Volume: 62, Issue:22

    Topics: Administration, Oral; Animals; Anti-Arrhythmia Agents; Arachidonic Acids; Dose-Response Relationship, Drug; Drug Stability; Epoxide Hydrolases; Esterification; Hepatocytes; Humans; Male; Mice; Microsomes, Liver; Myocardial Infarction; Myocytes, Cardiac; Rats, Sprague-Dawley; Rats, Wistar

2019