Page last updated: 2024-08-16

terfenadine and nelfinavir

terfenadine has been researched along with nelfinavir in 6 studies

Research

Studies (6)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's2 (33.33)29.6817
2010's4 (66.67)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Huang, L; Humphreys, JE; Morgan, JB; Polli, JW; Serabjit-Singh, CS; Webster, LO; Wring, SA1
Fischer, H; Huwyler, J; Poli, S; Schwab, D; Tabatabaei, A1
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A1
Artursson, P; Haglund, U; Karlgren, M; Kimoto, E; Lai, Y; Norinder, U; Vildhede, A; Wisniewski, JR1
Dalvie, D; Loi, CM; Smith, DA1
Afshari, CA; Chen, Y; Dunn, RT; Hamadeh, HK; Kalanzi, J; Kalyanaraman, N; Morgan, RE; van Staden, CJ1

Other Studies

6 other study(ies) available for terfenadine and nelfinavir

ArticleYear
Rational use of in vitro P-glycoprotein assays in drug discovery.
    The Journal of pharmacology and experimental therapeutics, 2001, Volume: 299, Issue:2

    Topics: Adenosine Triphosphatases; Animals; ATP Binding Cassette Transporter, Subfamily B, Member 1; Cells, Cultured; Chromatography, Liquid; Enzyme Inhibitors; Fluoresceins; Fluorescent Dyes; Humans; Mass Spectrometry; Pharmacology; Spodoptera

2001
Comparison of in vitro P-glycoprotein screening assays: recommendations for their use in drug discovery.
    Journal of medicinal chemistry, 2003, Apr-24, Volume: 46, Issue:9

    Topics: Adenosine Triphosphatases; Animals; ATP Binding Cassette Transporter, Subfamily B, Member 1; Biological Transport; Cells, Cultured; Drug Evaluation, Preclinical; Fluoresceins; Fluorescent Dyes; Humans; Indicators and Reagents; Mice; Models, Molecular; Rhodamines; Species Specificity; Swine

2003
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
    Chemical research in toxicology, 2010, Volume: 23, Issue:1

    Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship

2010
Classification of inhibitors of hepatic organic anion transporting polypeptides (OATPs): influence of protein expression on drug-drug interactions.
    Journal of medicinal chemistry, 2012, May-24, Volume: 55, Issue:10

    Topics: Atorvastatin; Biological Transport; Drug Interactions; Estradiol; Estrone; HEK293 Cells; Heptanoic Acids; Humans; Hydroxymethylglutaryl-CoA Reductase Inhibitors; In Vitro Techniques; Least-Squares Analysis; Liver; Liver-Specific Organic Anion Transporter 1; Models, Molecular; Multivariate Analysis; Organic Anion Transporters; Organic Anion Transporters, Sodium-Independent; Protein Isoforms; Pyrroles; Solute Carrier Organic Anion Transporter Family Member 1B3; Structure-Activity Relationship; Transfection

2012
Which metabolites circulate?
    Drug metabolism and disposition: the biological fate of chemicals, 2013, Volume: 41, Issue:5

    Topics: Humans; Metabolic Clearance Rate; Pharmaceutical Preparations

2013
A multifactorial approach to hepatobiliary transporter assessment enables improved therapeutic compound development.
    Toxicological sciences : an official journal of the Society of Toxicology, 2013, Volume: 136, Issue:1

    Topics: Animals; ATP Binding Cassette Transporter, Subfamily B; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Biological Transport; Chemical and Drug Induced Liver Injury; Cluster Analysis; Drug-Related Side Effects and Adverse Reactions; Humans; Liver; Male; Multidrug Resistance-Associated Proteins; Pharmacokinetics; Rats; Rats, Sprague-Dawley; Recombinant Proteins; Risk Assessment; Risk Factors; Toxicity Tests

2013