terbutaline has been researched along with piroxicam in 13 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 1 (7.69) | 18.2507 |
2000's | 3 (23.08) | 29.6817 |
2010's | 9 (69.23) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Ax, F; Bonham, NM; Hallberg, A; Karlén, A; Lennernäs, H; Winiwarter, S | 1 |
Faller, B; Wohnsland, F | 1 |
Du-Cuny, L; Mash, EA; Meuillet, EJ; Moses, S; Powis, G; Song, Z; Zhang, S | 1 |
Avdeef, A; Sun, N; Tam, KY; Tsinman, O | 1 |
Conradi, R; Lee, PH; Shanmugasundaram, V | 1 |
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A | 1 |
Campillo, NE; Guerra, A; Páez, JA | 1 |
García-Mera, X; González-Díaz, H; Prado-Prado, FJ | 1 |
Avdeef, A; Tam, KY | 1 |
Annand, R; Gozalbes, R; Jacewicz, M; Pineda-Lucena, A; Tsaioun, K | 1 |
Afshari, CA; Chen, Y; Dunn, RT; Hamadeh, HK; Kalanzi, J; Kalyanaraman, N; Morgan, RE; van Staden, CJ | 1 |
Chen, M; Hu, C; Suzuki, A; Thakkar, S; Tong, W; Yu, K | 1 |
Amidon, GL; Hilgendorf, C; Langguth, P; Lipka, E; Regårdh, CG; Spahn-Langguth, H | 1 |
1 review(s) available for terbutaline and piroxicam
Article | Year |
---|---|
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk | 2016 |
12 other study(ies) available for terbutaline and piroxicam
Article | Year |
---|---|
Correlation of human jejunal permeability (in vivo) of drugs with experimentally and theoretically derived parameters. A multivariate data analysis approach.
Topics: Humans; Intestinal Absorption; Jejunum; Models, Biological; Multivariate Analysis; Permeability; Pharmaceutical Preparations; Structure-Activity Relationship | 1998 |
High-throughput permeability pH profile and high-throughput alkane/water log P with artificial membranes.
Topics: Alkanes; Humans; Hydrogen-Ion Concentration; Intestinal Absorption; Membranes, Artificial; Octanols; Permeability; Pharmaceutical Preparations; Solubility; Water | 2001 |
Computational modeling of novel inhibitors targeting the Akt pleckstrin homology domain.
Topics: Antineoplastic Agents; Blood Proteins; Caco-2 Cells; Cell Membrane Permeability; Computer Simulation; Drug Discovery; Drug Screening Assays, Antitumor; Humans; Models, Molecular; Phosphoproteins; Protein Binding; Protein Kinase Inhibitors; Protein Structure, Tertiary; Proto-Oncogene Proteins c-akt; Quantitative Structure-Activity Relationship | 2009 |
The permeation of amphoteric drugs through artificial membranes--an in combo absorption model based on paracellular and transmembrane permeability.
Topics: Caco-2 Cells; Cell Membrane Permeability; Humans; Hydrogen-Ion Concentration; Membranes, Artificial; Molecular Structure; Pharmaceutical Preparations | 2010 |
Development of an in silico model for human skin permeation based on a Franz cell skin permeability assay.
Topics: 1-Methyl-3-isobutylxanthine; Cell Line; Cell Membrane Permeability; Humans; Models, Biological; Quantitative Structure-Activity Relationship; Skin Absorption | 2010 |
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship | 2010 |
Neural computational prediction of oral drug absorption based on CODES 2D descriptors.
Topics: Administration, Oral; Humans; Models, Chemical; Neural Networks, Computer; Permeability; Quantitative Structure-Activity Relationship; Technology, Pharmaceutical | 2010 |
Multi-target spectral moment QSAR versus ANN for antiparasitic drugs against different parasite species.
Topics: Antiparasitic Agents; Molecular Structure; Neural Networks, Computer; Parasitic Diseases; Quantitative Structure-Activity Relationship; Species Specificity; Thermodynamics | 2010 |
How well can the Caco-2/Madin-Darby canine kidney models predict effective human jejunal permeability?
Topics: Animals; Disease Models, Animal; Dogs; Humans; Jejunal Diseases; Kidney Diseases; Models, Biological; Permeability; Porosity; Regression Analysis | 2010 |
QSAR-based permeability model for drug-like compounds.
Topics: Caco-2 Cells; Cell Membrane Permeability; Drug Discovery; Humans; Pharmaceutical Preparations; Pharmacokinetics; Quantitative Structure-Activity Relationship | 2011 |
A multifactorial approach to hepatobiliary transporter assessment enables improved therapeutic compound development.
Topics: Animals; ATP Binding Cassette Transporter, Subfamily B; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Biological Transport; Chemical and Drug Induced Liver Injury; Cluster Analysis; Drug-Related Side Effects and Adverse Reactions; Humans; Liver; Male; Multidrug Resistance-Associated Proteins; Pharmacokinetics; Rats; Rats, Sprague-Dawley; Recombinant Proteins; Risk Assessment; Risk Factors; Toxicity Tests | 2013 |
Caco-2 versus Caco-2/HT29-MTX co-cultured cell lines: permeabilities via diffusion, inside- and outside-directed carrier-mediated transport.
Topics: Antipyrine; Atenolol; ATP Binding Cassette Transporter, Subfamily B, Member 1; Biological Transport, Active; Caco-2 Cells; Carrier Proteins; Cell Membrane Permeability; Cellular Senescence; Coculture Techniques; Furosemide; HT29 Cells; Humans; Intestinal Absorption; Intestinal Mucosa; Ketoprofen; Mannitol; Metoprolol; Microscopy, Electron; Piroxicam; Reproducibility of Results; Terbutaline | 2000 |