tempo and phthalocyanine

tempo has been researched along with phthalocyanine* in 4 studies

Other Studies

4 other study(ies) available for tempo and phthalocyanine

ArticleYear
In vivo fluorescence bioimaging of ascorbic acid in mice: Development of an efficient probe consisting of phthalocyanine, TEMPO, and albumin.
    Scientific reports, 2018, 01-24, Volume: 8, Issue:1

    After a groundbreaking study demonstrated that a high dose of ascorbic acid selectively kills cancer cells, the compound has been tested in the clinic against various forms of cancers, with some success. However, in vivo tracing of intravenously injected ascorbic acid has not been achieved. Herein, we successfully imaged ascorbic acid intravenously injected into mice based on the discovery of a novel, highly sensitive, and appropriately selective fluorescent probe consisting of silicon phthalocyanine (SiPc) and two 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) radicals, i.e., R2c. The radicals in this R2c were encapsulated in dimeric bovine serum albumin, and the sensitivity was >100-fold higher than those of other R2c-based probes. Ascorbic acid intravenously injected into mice was efficiently transported to the liver, heart, lung, and cholecyst. The present results provide opportunities to advance the use of ascorbic acid as cancer therapy.

    Topics: Administration, Intravenous; Albumins; Animals; Ascorbic Acid; Cattle; Cyclic N-Oxides; Fluorescent Dyes; Indoles; Intravital Microscopy; Isoindoles; Mice; Optical Imaging; Vitamins

2018
TEMPO-functionalized zinc phthalocyanine: synthesis, magnetic properties, and its utility for electrochemical sensing of ascorbic acid.
    Dalton transactions (Cambridge, England : 2003), 2016, Feb-21, Volume: 45, Issue:7

    Zinc(ii) phthalocyanine (TEMPO-ZnPc), peripherally functionalized with 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) radicals is synthesized and its magneto structural and electrochemical behaviors are investigated. TEMPO-ZnPc shows multi-electron ring based reduction reactions and a TEMPO based oxidation reaction. Spectroelectrochemical measurements support these peak assignments. TEMPO-ZnPc is tested as a homogeneous and heterogeneous ascorbic acid (AA) sensor. Disappearance of TEMPO-ZnPc based reduction processes and the observation of new waves at around 0 and 1.20 V with respect to increasing AA concentration indicate the interaction of TEMPO-ZnPc with AA and usability of the complex as an electrochemical AA sensor. For practical usage as heterogeneous electrocatalysts for AA sensing, a glassy carbon electrode (GCE) is coated with TEMPO-ZnPc (GCE/TEMPO-ZnPc) and this modified electrode is tested as a heterogeneous AA sensor. The redox peak of GCE/TEMPO-ZnPc at 0.81 V decreases the peak current while a new wave is observed at 0.65 V during the titration of the electrolyte with AA. GCE/TEMPO-ZnPc sense AA with 1.75 × 10(-6) mol dm(-3) LOD with a sensitivity of 1.89 × 10(3) A cm mol(-1).

    Topics: Ascorbic Acid; Coordination Complexes; Cyclic N-Oxides; Electrochemical Techniques; Electrodes; Indoles; Isoindoles; Magnetics; Molecular Structure; Oxidation-Reduction

2016
Phthalocyanine-based fluorescence probes for detecting ascorbic acid: phthalocyaninatosilicon covalently linked to TEMPO radicals.
    Chemical communications (Cambridge, England), 2011, May-07, Volume: 47, Issue:17

    We have applied phthalocyaninatosilicon (SiPc) covalently linked to one or two tetramethyl-1-piperidinyloxyl (TEMPO) radicals as fluorescence probes for detecting ascorbic acid in biological systems.

    Topics: Ascorbic Acid; Cyclic N-Oxides; Female; Fluorescence; HeLa Cells; Humans; Indoles; Isoindoles; Liposomes; Microscopy, Fluorescence; Molecular Imaging; Silicon; Spectrometry, Fluorescence; Uterine Cervical Neoplasms

2011
ESR studies of a series of phthalocyanines. Mechanism of phototoxicity. Comparative quantitation of O2-. using ESR spin-trapping and cytochrome c reduction techniques.
    Free radical research, 1998, Volume: 28, Issue:5

    ESR experiments with 2,2,6,6-tetramethyl-4-piperidone (4-oxo-TEMP) and the spin-trap 5,5-dimethyl pyrroline-N-oxide (DMPO) have been performed on a series of new phthalocyanines: the bis(tri-n-hexylsiloxy) silicon phthalocyanine ([(nhex)3SiO]2SiPc), the hexadecachloro zinc phthalocyanine (ZnPcCl16), the hexadecachloro aluminum phthalocyanine (AlPcCl16), the hexadecachloro aluminum phthalocyanine sulfate (HSO4AlPcCl16), whose photocytotoxicity has been studied against various leukemic and melanotic cell lines. Type I and Type II pathways occur simultaneously in DMF although the Type II seems to be prevalent. These results are not changed when the bis(tri-n-hexylsiloxy) silicon phthalocyanine is entrapped into liposomes. By contrast, the Type I process is favored in membrane models for all the perchlorinated phthalocyanines. This modified behavior may be accounted on a possible stacking of phthalocyanines in membranes and a preventing effect of axial ligands against aggregation in the case of the bis(tri-n-hexylsiloxy) silicon phthalocyanine. The photodynamic action of zinc perchlorinated phthalocyanine is not dependent on singlet oxygen, phototoxicity of this molecule being essentially mediated by oxygen free radicals. Quantitation of the superoxide radical was accomplished, with good agreement, by two techniques: the cytochrome c reduction and the ESR quantitation based on the double integration of the first derivative of the ESR signal. The disproportionation of the superoxide radical or degradation of the spin-trap seem to be avoided in aprotic solvents such as DMF.

    Topics: Cyclic N-Oxides; Cytochrome c Group; Electron Spin Resonance Spectroscopy; Hydroxyl Radical; Indoles; Isoindoles; Liposomes; Oxygen; Photochemotherapy; Photosensitizing Agents; Reactive Oxygen Species; Sulfides; Superoxides; Tumor Cells, Cultured

1998