tempo has been researched along with 2-2--azobis(2-amidinopropane)* in 3 studies
3 other study(ies) available for tempo and 2-2--azobis(2-amidinopropane)
Article | Year |
---|---|
Evaluation of the in vivo antioxidative activity of redox nanoparticles by using a developing chicken egg as an alternative animal model.
Antioxidants have been demonstrated to exert beneficial effects as pharmacotherapies for cardiovascular diseases. The in vitro systems generally employed to evaluate antioxidants, however, are limited by having no appreciable in vivo redox status of the antioxidants. Therefore, we used our developing chicken egg model to evaluate the in vivo antioxidative activity of a redox nanoparticle possessing 2,2,6,6-tetramethylpiperidine-1-oxyl (RNP(O)). The 2,2'-azobis(2-methylpropionamidine) dihydrochloride (AAPH) elicited strong oxidative stress and its LD50 value for chick embryos was 3.5±0.9mg/egg. The low molecular weight nitroxide compound, 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL), which is known to have the highest level of antioxidant activity, showed no significant protective effect against AAPH-induced embryo lethality. On the contrary, RNP(O) had potent protective effects against AAPH-induced embryo lethality. Moreover, RNP(O) could significantly suppress the production of lipid peroxides in chick serum induced by hydrocortisone. Since RNP(O) has a longer retention time in blood than TEMPOL, RNP(O) may protect the embryo against lethal oxidative stress by suppressing lipid peroxidation. The validity of in vivo experiments using developing chicken eggs was supported by our data, where RNP(O) was determined to elicit strong antioxidative activity in vivo, irrespective of the lack of a significant difference in the in vitro activity between low-molecular weight TEMPOL and RNP(O). Our results support the use of the developing chicken egg model to evaluate the potential in vivo antioxidative activity of RNP(O). Topics: Amidines; Animals; Antioxidants; Brain; Chick Embryo; Cyclic N-Oxides; Hydrocortisone; Lipid Peroxidation; Liver; Models, Animal; Nanoparticles; Oxidants; Oxidation-Reduction; Thiobarbituric Acid Reactive Substances | 2014 |
The effects of nitroxide radicals on oxidative DNA damage.
The indolinonic and quinolinic aromatic nitroxides synthesized by us are a novel class of biological antioxidants, which afford a good degree of protection against free radical-induced oxidation in different lipid and protein systems. To further our understanding of their antioxidant behavior, we thought it essential to have more information on their effects on DNA exposed to free radicals. Here, we report on the results obtained after exposure of plasmid DNA and calf thymus DNA to peroxyl radicals generated by the water-soluble radical initiator, 2,2'-azobis(2-amidinopropane)dihydrochloride (AAPH), and the protective effects of the aromatic nitroxides and their hydroxylamines, using a simple in vitro assay for DNA damage. In addition, we also tested for the potential of these nitroxides to inhibit hydroxyl radical-mediated DNA damage inflicted by Fenton-type reactions using copper and iron ions. The commercial aliphatic nitroxides 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO), 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL), and bis(2,2, 6,6-tetramethyl-1-oxyl-piperidin-4-yl)sebacate (TINUVIN 770) were included for comparison. The results show that the majority of compounds tested protect: (i) both plasmid DNA and calf thymus DNA against AAPH-mediated oxidative damage in a concentration-dependent fashion (1-0.1 mM), (ii) both Fe(II) and Cu(I) induced DNA oxidative damage. However, all compounds failed to protect DNA against damage inflicted by the presence of the transition metals in combination with H(2)O(2). The differences in protection between the compounds are discussed in relation to their molecular structure and chemical reactivity. Topics: Amidines; Animals; Cattle; Copper; Cyclic N-Oxides; DNA; DNA Damage; DNA, Bacterial; DNA, Recombinant; Free Radical Scavengers; Free Radicals; Heterocyclic Compounds, 2-Ring; Hydrogen Peroxide; Hydroxylamines; Iron; Oxidants; Oxidative Stress; Piperidines; Quinolones; Spin Labels; Triazoles | 2000 |
Inhibition of in vitro lipid peroxidation by stable steroidic nitroxyl radicals.
4',4'-dimethylspiro (5 alpha-cholestane-3,2'-oxazolidin)-3'-yloxy (IK-1) and 7 alpha,12 alpha-dihydroxy-4',-4'-dimethylspiro (5 beta-cholan-24-oic-3,2'-oxazolidin)-3'-yloxy acid (IK-2), two stable steroidic nitroxyl radicals, were newly synthesized and tested as possible inhibitors of lipid peroxidation, induced by Fenton's reagent in both rat liver microsomes and egg phosphatidylcholine liposomes. The inhibitory activity, evaluated through the formation of thiobarbituric acid reactive substances (TBARS) and the conjugated diene, was compared with that of alpha-tocopherol and 2,2,6,6-tetramethylpiperidine-1-yloxy (TEMPO). In each model system IK-1 and IK-2 exhibited an IC50 of 8 microM and reduced the formation of TBARS and conjugated diene, showing IK-1 a potency comparable to alpha-tocopherol and higher than TEMPO. Moreover IK-1 and, to a lesser extent IK-2, reduced the lipid peroxidation induced in the microsomes by the water-soluble azo-initiator 2,2'-Azobis (2-methylpropionamidine) dihydrochloride (AMPH), indicating the IK-1 and IK-2 ability as chain-breaking antioxidants. The hydroxylamine 4',4'-dimethylspiro (5 alpha-cholestane-3,2'-oxazolidin)-3'-hydroxide (IK-3), obtained by chemical reduction of IK-1, was completely inactive as an inhibitor of lipid peroxidation in heat pre-treated microsomes and in liposomes. However in microsomes it was active since it was oxidized to the corresponding nitroxyl radical IK-1. Topics: Amidines; Animals; Antioxidants; Azo Compounds; Cholic Acids; Cyclic N-Oxides; Free Radicals; Hydrogen Peroxide; Iron; Lipid Peroxidation; Liposomes; Microsomes, Liver; Molecular Structure; Oxidants; Rats; Rats, Sprague-Dawley; Thiobarbituric Acid Reactive Substances; Vitamin E | 1997 |