tempo and 1-palmitoyl-2-oleoylphosphatidylcholine

tempo has been researched along with 1-palmitoyl-2-oleoylphosphatidylcholine* in 2 studies

Other Studies

2 other study(ies) available for tempo and 1-palmitoyl-2-oleoylphosphatidylcholine

ArticleYear
Molecular dynamics simulations of depth distribution of spin-labeled phospholipids within lipid bilayer.
    The journal of physical chemistry. B, 2013, May-16, Volume: 117, Issue:19

    Spin-labeled lipids are commonly used as fluorescence quenchers in studies of membrane penetration of dye-labeled proteins and peptides using depth-dependent quenching. Accurate calculations of depth of the fluorophore rely on the use of several spin labels placed in the membrane at various positions. The depth of the quenchers (spin probes) has to be determined independently; however, experimental determination of transverse distributions of spin probe depths is difficult. In this Article, we use molecular dynamics (MD) simulations to study the membrane behavior and depth distributions of spin-labeled phospholipids in a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayer. To probe different depths within the bilayer, a series containing five Doxyl-labeled lipids (n-Doxyl PC) has been studied, in which a spin moiety was covalently attached to nth carbon atoms (where n = 5, 7, 10, 12, and 14) of the sn-2 stearoyl chain of the host phospholipid. Our results demonstrate that the chain-attached spin labels are broadly distributed across the model membrane and their environment is characterized by a high degree of mobility and structural heterogeneity. Despite the high thermal disorder, the depth distributions of the Doxyl labels were found to correlate well with their attachment positions, indicating that the distribution of the spin label within the model membrane is dictated by the depth of the nth lipid carbon atom and not by intrinsic properties of the label. In contrast, a much broader and heterogeneous distribution was observed for a headgroup-attached Tempo spin label of Tempo-PC lipids. MD simulations reveal that, due to the hydrophobic nature, a Tempo moiety favors partitioning from the headgroup region deeper into the membrane. Depending on the concentration of Tempo-PC lipids, the probable depth of the Tempo moiety could span a range from 14.4 to 18.2 Å from the membrane center. Comparison of the MD-estimated immersion depths of Tempo and n-Doxyl labels with their suggested experimental depth positions allows us to review critically the possible sources of error in depth-dependent fluorescence quenching studies.

    Topics: Cyclic N-Oxides; Diffusion; Lipid Bilayers; Molecular Conformation; Molecular Dynamics Simulation; Phosphatidylcholines; Spin Labels

2013
Identification of membrane-contacting loops of the catalytic domain of cytochrome P450 2C2 by tryptophan fluorescence scanning.
    Biochemistry, 2006, Apr-11, Volume: 45, Issue:14

    The catalytic domain of cytochrome P450 is thought to contact the lipid core of the endoplasmic reticulum membrane based on antibody epitope accessibility, protease susceptibility, and hydrophobic surfaces present on P450 structures of solubilized forms of the proteins. Quenching by nitroxide spin label-modified phospholipids of the fluorescence of tryptophan residues substituted into cytochrome P450 2C2, modified to contain tryptophan only at position 120, was used to identify regions of P450 inserted into the lipid core and to estimate the depth of penetration. Consistent with the proposed models of cytochrome P450-membrane interaction, the fluorescence of tryptophans inserted at residues 36 and 69 in the two segments of P450 2C2 flanking the A-helix and at residue 380 in the beta2-2 strand was quenched by nitroxide spin labels on carbon 5 of the fatty acid tails of the phospholipids within the lipid bilayer. The fluorescence of tryptophan at 380 was also strongly quenched by a spin label on carbon 12 of the fatty acids suggesting it was deepest in the membrane. However, fluorescence of tryptophan substituted at residue 225 in the F-G loop, which was predicted to be in the lipid bilayer, was not quenched by the spin labels at carbons 5 and 12 of the fatty acids. The pattern of quenching of fluorescence for tryptophans at the other positions tested, 80, 189, 239, and 347, was similar to the parent protein indicating they were not inserted into the lipid bilayer as expected. The results are consistent with an orientation of cytochrome P450 2C2 in the membrane in which positions 36, 69, and 380 are inserted into the lipid bilayer and residues 80 and 225 are near or within the phospholipid headgroup region. In this orientation, the F-G loop, which contains residue 225, could form a dimerization interface as was observed in the P450 2C8 crystal structure (Schoch, G. A., et al. (2004) J. Biol. Chem. 279, 9497).

    Topics: Catalytic Domain; Cyclic N-Oxides; Cytochrome P-450 Enzyme System; Liposomes; Membrane Proteins; Models, Molecular; Mutagenesis, Site-Directed; Phosphatidylcholines; Spectrometry, Fluorescence; Spin Labels; Tryptophan

2006