tempo and 1-3-dimethylthiourea

tempo has been researched along with 1-3-dimethylthiourea* in 2 studies

Other Studies

2 other study(ies) available for tempo and 1-3-dimethylthiourea

ArticleYear
Nitroxide antioxidant as a potential strategy to attenuate the oxidative/nitrosative stress induced by hydrogen peroxide plus nitric oxide in cultured neurons.
    Nitric oxide : biology and chemistry, 2016, Apr-01, Volume: 54

    Oxidative/nitrosative stress contributes to the etiology of the neurological disorders, including ischemic stroke and chronic neurodegeneration. Neurotoxic modifications mediated by reactive oxygen species (ROS) or reactive nitrogen species (RNS) are closely associated with the destruction of key macromolecules and inactivation of antioxidant enzymes, which compromises antioxidant defenses. Approaches to expel ROS/RNS and alleviate toxic oxidative/nitrosative stress in neurons have not completely been defined. Here, we aimed to evaluate the efficacy of various antioxidants that serve as the neuroprotectors under a toxic stress created by ROS plus nitric oxide (NO). Sublytic concentrations of hydrogen peroxide (H2O2) plus NO donor S-nitroso-N-acetyl-D, L-penicillamine (SNAP) enabled to induce a toxic oxidative/nitrosative stress through activating both p38 MAPK and p53 cascades, and cause DNA damage and protein tyrosine nitration in primary neuronal cultures. After comparing six antioxidants, including superoxide dimutase (SOD), catalase, 2,2,6,6-tetramethyl-1-piperidinoxyl (TEMPO), N-acetylcysteine, dimethylthiourea, and uric acid, TEMPO was the superior antioxidant that comprehensively and efficaciously decreased H2O2 plus SNAP-evoked activation of stress cascades of p38 MAPK and p53, production of NO, ROS, and peroxynitrite, double-strand breaks of DNA, and nitration of protein tyrosine residues. SOD increased the peroxynitrite formation and was unable to reduce the level of protein nitration. All antioxidants tested, except SOD, effectively reduced neuronal damage and DNA breakage caused by the toxic H2O2/SNAP combination. In conclusion, these results suggest that TEMPO ensures excellent ROS/RNS clearance and stress-signaling inhibition, thus effectively rescuing neurons from ROS/H2O2 plus NO/SNAP-induced insult. This study reveals a potential strategy for nitroxide antioxidants as a therapeutic agent against oxidative/nitrosative neurotoxicity.

    Topics: Acetylcysteine; Animals; Antioxidants; Catalase; Cyclic N-Oxides; Hydrogen Peroxide; L-Lactate Dehydrogenase; Neurons; Nitric Oxide; Nitric Oxide Donors; Nitrites; Oxidative Stress; Peroxynitrous Acid; Rats; Rats, Sprague-Dawley; Reactive Nitrogen Species; Reactive Oxygen Species; S-Nitroso-N-Acetylpenicillamine; Superoxide Dismutase; Thiourea; Uric Acid

2016
Inhibition by singlet molecular oxygen of the vascular reactivity in rabbit mesenteric artery.
    British journal of pharmacology, 1997, Volume: 121, Issue:1

    1. The effects of reactive oxygen intermediates derived from photoactivated rose bengal on the vascular reactivity have been evaluated in rabbit mesenteric artery ring preparations. The artery rings were exposed to xanthene dye rose bengal (50 nM) illuminated (6,000 lux) at 560 nm for 30 min. Spin trapping studies with 2,2,6,6-tetramethylpiperidine (TEMP) and 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) with electron spin resonance spectrometry were also conducted in solution (and not within tissues) to determine quantitatively the reactive oxygen species generated from photoactivated rose bengal. 2. Contraction of the ring preparations induced by noradrenaline (10(-8) to 10(-4) M) was attenuated by previous exposure to photolysed rose bengal; the observation that the pD2 decreased without a significant reduction in maximum tension generation is consistent with the view that receptor dysfunction may be involved in the effect of photolysed rose bengal. 3. Prior exposure to photolysed rose bengal of the ring preparations inhibited the endothelium-dependent relaxation evoked by acetylcholine (10(-6) M) and calcium ionophore A23187 (10(-7) M), but not the endothelium-independent relaxation evoked by nitroglycerin (10(-6) M). 4. A variety of scavengers, superoxide dismutase (33 units ml-1), catalase (32 units ml-1) and 1,3-dimethyl-2-thiourea (DMTU, 10 mM), which should eliminate the superoxide anion radical, H2O2 and the hydroxyl radical, had no effect on the attenuated responses to noradrenaline and acetylcholine induced by photolysed rose bengal. In contrast, the inhibition of the observed effect of photolysed rose bengal was obtained with addition of histidine (25 mM), a singlet molecular oxygen quencher. 5. It was found that photolysis of rose bengal from a 1:2:2:1 quartet, characteristic of the hydroxyl radical-DMPO spin adduct, which was effectively blunted by DMTU, superoxide dismutase and catalase whereas histidine was ineffective. The results of the electron spin resonance study also showed that a singlet molecular oxygen was produced by photoactivation of rose bengal; this was detected as singlet oxygen-TEMP product (TEMPO; 2,2,6,6-tetramethylpiperidine-N-oxyl). The formation of the TEMPO signal was strongly inhibited by histidine, but not by DMTU, superoxide dismutase and catalase. 6. It is suggested that the superoxide anion radical, H2O2 and hydroxyl radical are formed in addition to singlet molecular oxygen, and the data obtained from the present stu

    Topics: Acetylcholine; Animals; Catalase; Cyclic N-Oxides; Electron Spin Resonance Spectroscopy; Fluorescent Dyes; Free Radical Scavengers; Hydrogen Peroxide; Hydroxyl Radical; Male; Mesenteric Arteries; Muscle Contraction; Muscle, Smooth, Vascular; Nitroglycerin; Photolysis; Rabbits; Rose Bengal; Spin Labels; Spin Trapping; Superoxide Dismutase; Superoxides; Thiourea; Ultraviolet Rays; Vasodilator Agents

1997