temozolomide has been researched along with cyclosporine in 7 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 3 (42.86) | 29.6817 |
2010's | 4 (57.14) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Lombardo, F; Obach, RS; Waters, NJ | 1 |
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A | 1 |
Ekins, S; Williams, AJ; Xu, JJ | 1 |
Afshari, CA; Chen, Y; Dunn, RT; Hamadeh, HK; Kalanzi, J; Kalyanaraman, N; Morgan, RE; van Staden, CJ | 1 |
Chen, M; Hu, C; Suzuki, A; Thakkar, S; Tong, W; Yu, K | 1 |
de Barros e Silva, MJ; de Paiva, TF; Fanelli, MF; Gimenes, DL; Rinck, JA | 1 |
Amoroso, R; Bartoli, B; Benvenuti, L; Gagliardi, R; Gremigni, V; Lena, A; Rechichi, M; Rossi, L; Salvetti, A; Scarcelli, V; Vecchio, D | 1 |
1 review(s) available for temozolomide and cyclosporine
Article | Year |
---|---|
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk | 2016 |
6 other study(ies) available for temozolomide and cyclosporine
Article | Year |
---|---|
Trend analysis of a database of intravenous pharmacokinetic parameters in humans for 670 drug compounds.
Topics: Blood Proteins; Half-Life; Humans; Hydrogen Bonding; Infusions, Intravenous; Pharmacokinetics; Protein Binding | 2008 |
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship | 2010 |
A predictive ligand-based Bayesian model for human drug-induced liver injury.
Topics: Bayes Theorem; Chemical and Drug Induced Liver Injury; Humans; Ligands | 2010 |
A multifactorial approach to hepatobiliary transporter assessment enables improved therapeutic compound development.
Topics: Animals; ATP Binding Cassette Transporter, Subfamily B; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Biological Transport; Chemical and Drug Induced Liver Injury; Cluster Analysis; Drug-Related Side Effects and Adverse Reactions; Humans; Liver; Male; Multidrug Resistance-Associated Proteins; Pharmacokinetics; Rats; Rats, Sprague-Dawley; Recombinant Proteins; Risk Assessment; Risk Factors; Toxicity Tests | 2013 |
Tuberculosis in a patient on temozolomide: a case report.
Topics: Anti-Infective Agents; Anti-Inflammatory Agents; Anti-Ulcer Agents; Antibiotics, Antitubercular; Anticholesteremic Agents; Anticonvulsants; Antineoplastic Agents, Alkylating; Atorvastatin; Brain Neoplasms; Combined Modality Therapy; Cyclosporine; Dacarbazine; Dexamethasone; Female; Fluoxetine; Glioblastoma; Heptanoic Acids; Humans; Immunosuppressive Agents; Isoniazid; Middle Aged; Omeprazole; Phenobarbital; Prednisone; Pyrazinamide; Pyrroles; Radiotherapy; Red-Cell Aplasia, Pure; Rifampin; Temozolomide; Trimethoprim, Sulfamethoxazole Drug Combination; Tuberculosis, Pulmonary | 2009 |
Drugs targeting the mitochondrial pore act as cytotoxic and cytostatic agents in temozolomide-resistant glioma cells.
Topics: Acridine Orange; Betulinic Acid; Carbonyl Cyanide m-Chlorophenyl Hydrazone; Cell Death; Cell Line, Tumor; Cell Survival; Cyclosporine; Cytostatic Agents; Dacarbazine; Drug Resistance, Neoplasm; ErbB Receptors; Glioma; Humans; Indazoles; Membrane Potential, Mitochondrial; Mitochondrial Membrane Transport Proteins; Mitochondrial Permeability Transition Pore; Pentacyclic Triterpenes; Polymerase Chain Reaction; Retinoids; Temozolomide; Triterpenes | 2009 |