tellurium has been researched along with pyoverdin* in 2 studies
2 other study(ies) available for tellurium and pyoverdin
Article | Year |
---|---|
Extracellular biogenic nanomaterials inhibit pyoverdine production in Pseudomonas aeruginosa: a novel insight into impacts of metal(loid)s on environmental bacteria.
Anthropogenic activities such as mining, smelting, and industrial use have caused serious problems of metal(loid) pollution in nearly every country in the world. A wide range of environmental microorganisms are capable of transforming metal(loid)s into nanomaterials, i.e., biogenic nanomaterials (bio-NMs), in the environment. Although the impacts of various metal(loid)s on the ecosystems have been extensively studied, the potential influence of the bio-NMs generated in the environment to environmental organisms is largely unexplored. Using tellurium nanomaterials transformed from tellurite by a metal-reducing bacterium as model bio-NMs, we demonstrated that the bio-NMs significantly decreased siderophore production in an environmental bacterium Pseudomonas aeruginosa in both planktonic cultures and biofilms. Transcriptomic analysis revealed that the bio-NMs inhibited the expression of genes involved in biosynthesis and transport of siderophores. Siderophores secreted by certain bacteria in microbial communities can be considered as public goods that can be exploited by local communities, playing an important role in shaping microbial communities. The inhibition of siderophore production by the bio-NMs implies that bio-NMs may have an important influence on the ecosystems through altering specific functions of environmental bacteria. Taken together, this study provides a novel insight into the environmental impacts of metal(loid)s. Topics: Biological Transport; Gene Expression Regulation, Bacterial; Metalloids; Nanostructures; Oligopeptides; Pseudomonas aeruginosa; Tellurium | 2015 |
Biogenic tellurium nanorods as a novel antivirulence agent inhibiting pyoverdine production in Pseudomonas aeruginosa.
While antibiotic resistance in bacteria is rapidly increasing, the development of new antibiotics has decreased in recent years. Antivirulence drugs disarming rather than killing pathogens have been proposed to alleviate the problem of resistance inherent to existing biocidal antibiotics. Here, we report a nontoxic biogenic nanomaterial as a novel antivirulence agent to combat bacterial infections caused by Pseudomonas aeruginosa. We synthesized, in an environmentally benign fashion, tellurium nanorods (TeNRs) using the metal-reducing bacterium Shewanella oneidensis, and found that the biogenic TeNRs could effectively inhibit the production of pyoverdine, one of the most important virulence factors in P. aeruginosa. Our results suggest that amyloids and extracellular polysaccharides Pel and Psl are not involved in the interactions between P. aeruginosa and the biogenic TeNRs, while flagellar movement plays an important role in the cell-TeNRs interaction. We further showed that the TeNRs (up to 100 µg/mL) did not exhibit cytotoxicity to human bronchial epithelial cells and murine macrophages. Thus, biogenic TeNRs hold promise as a novel antivirulence agent against P. aeruginosa. Topics: Anti-Bacterial Agents; Bacterial Proteins; Nanotubes; Oligopeptides; Pseudomonas aeruginosa; Shewanella; Tellurium; Virulence Factors | 2014 |