tellurium and lawsone

tellurium has been researched along with lawsone* in 4 studies

Other Studies

4 other study(ies) available for tellurium and lawsone

ArticleYear
Structural and electrochemical characterization of lawsone-dependent production of tellurium-metal nanoprecipitates by photosynthetic cells of Rhodobacter capsulatus.
    Bioelectrochemistry (Amsterdam, Netherlands), 2020, Volume: 133

    Cells of the facultative photosynthetic bacterium Rhodobacter capsulatus exploit the simultaneous presence in the cultural medium of the toxic oxyanion tellurite (TeO

    Topics: Crystallization; Nanoparticles; Naphthoquinones; Oxidation-Reduction; Rhodobacter capsulatus; Tellurium

2020
Recovery of Elemental Tellurium Nanoparticles by the Reduction of Tellurium Oxyanions in a Methanogenic Microbial Consortium.
    Environmental science & technology, 2016, Feb-02, Volume: 50, Issue:3

    This research focuses on the microbial recovery of elemental tellurium (Te(0)) from aqueous streams containing soluble tellurium oxyanions, tellurate (Te(VI)), and tellurite (Te(IV)). An anaerobic mixed microbial culture occurring in methanogenic granular sludge was able to biocatalyze the reduction of both Te oxyanions to produce Te(0) nanoparticles (NPs) in sulfur-free medium. Te(IV) reduction was seven times faster than that of Te(VI), such that Te(IV) did not accumulate to a great extent during Te(VI) reduction. Endogenous substrates in the granular sludge provided the electron equivalents required to reduce Te oxyanions; however, the reduction rates were modestly increased with an exogenous electron donor such as H2. The effect of four redox mediators (anthraquinone-2,6-disulfonate, hydroxocobalamin, riboflavin, and lawsone) was also tested. Riboflavin increased the rate of Te(IV) reduction eleven-fold and also enhanced the fraction Te recovered as extracellular Te(0) NPs from 21% to 64%. Lawsone increased the rate of Te(VI) reduction five-fold, and the fraction of Te recovered as extracellular material increased from 49% to 83%. The redox mediators and electron donors also impacted the morphologies and localization of Te(0) NPs, suggesting that NP production can be tailored for a particular application.

    Topics: Anthraquinones; Biocatalysis; Hydroxocobalamin; Metal Nanoparticles; Methane; Microbial Consortia; Naphthoquinones; Oxidation-Reduction; Riboflavin; Sewage; Tellurium

2016
Extracellular production of tellurium nanoparticles by the photosynthetic bacterium Rhodobacter capsulatus.
    Journal of hazardous materials, 2016, May-15, Volume: 309

    The toxic oxyanion tellurite (TeO3(2-)) is acquired by cells of Rhodobacter capsulatus grown anaerobically in the light, via acetate permease ActP2 and then reduced to Te(0) in the cytoplasm as needle-like black precipitates. Interestingly, photosynthetic cultures of R. capsulatus can also generate Te(0) nanoprecipitates (TeNPs) outside the cells upon addition of the redox mediator lawsone (2-hydroxy-1,4-naphtoquinone). TeNPs generation kinetics were monitored to define the optimal conditions to produce TeNPs as a function of various carbon sources and lawsone concentration. We report that growing cultures over a 10 days period with daily additions of 1mM tellurite led to the accumulation in the growth medium of TeNPs with dimensions from 200 up to 600-700 nm in length as determined by atomic force microscopy (AFM). This result suggests that nucleation of TeNPs takes place over the entire cell growth period although the addition of new tellurium Te(0) to pre-formed TeNPs is the main strategy used by R. capsulatus to generate TeNPs outside the cells. Finally, X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FT-IR) analysis of TeNPs indicate they are coated with an organic material which keeps the particles in solution in aqueous solvents.

    Topics: Fructose; Lactic Acid; Malates; Nanoparticles; Naphthoquinones; Photosynthesis; Pyruvic Acid; Rhodobacter capsulatus; Tellurium

2016
Reduction of chalcogen oxyanions and generation of nanoprecipitates by the photosynthetic bacterium Rhodobacter capsulatus.
    Journal of hazardous materials, 2014, Mar-30, Volume: 269

    The facultative photosynthetic bacterium Rhodobacter capsulatus is characterized in its interaction with the toxic oxyanions tellurite (Te(IV)) and selenite (Se(IV)) by a highly variable level of resistance that is dependent on the growth mode making this bacterium an ideal organism for the study of the microbial interaction with chalcogens. As we have reported in the past, while the oxyanion tellurite is taken up by R. capsulatus cells via acetate permease and it is reduced to Te(0) in the cytoplasm in the form of splinter-like black intracellular deposits no clear mechanism was described for Se(0) precipitation. Here, we present the first report on the biotransformation of tellurium and selenium oxyanions into extracellular Te(0) and Se(0)nanoprecipitates (NPs) by anaerobic photosynthetically growing cultures of R. capsulatus as a function of exogenously added redox-mediator lawsone, i.e. 2-hydroxy-1,4-naphthoquinone. The NPs formation was dependent on the carbon source used for the bacterial growth and the rate of chalcogen reduction was constant at different lawsone concentrations, in line with a catalytic role for the redox mediator. X-ray diffraction (XRD) analysis demonstrated the Te(0) and Se(0) nature of the nanoparticles.

    Topics: Anaerobiosis; Anions; Bacterial Proteins; Chalcogens; Microscopy, Electron, Transmission; Nanoparticles; Naphthoquinones; Oxidation-Reduction; Photosynthesis; Rhodobacter capsulatus; Selenium Compounds; Tellurium; X-Ray Diffraction

2014