tellurium has been researched along with copper-indium-diselenide* in 3 studies
1 review(s) available for tellurium and copper-indium-diselenide
Article | Year |
---|---|
Towards sustainable photovoltaics: the search for new materials.
The opportunities for photovoltaic (PV) solar energy conversion are reviewed in the context of projected world energy demands for the twenty-first century. Conventional single-crystal silicon solar cells are facing increasingly strong competition from thin-film solar cells based primarily on polycrystalline absorber materials, such as cadmium telluride (CdTe) and copper indium gallium diselenide (CIGS). However, if PVs are to make a significant contribution to satisfy global energy requirements, issues of sustainability and cost will need to be addressed with increased urgency. There is a clear need to expand the range of materials and processes that is available for thin-film solar cell manufacture, placing particular emphasis on low-energy processing and sustainable non-toxic raw materials. The potential of new materials is exemplified by copper zinc tin sulphide, which is emerging as a viable alternative to the more toxic CdTe and the more expensive CIGS absorber materials. Topics: Cadmium Compounds; Conservation of Energy Resources; Conservation of Natural Resources; Copper; Electricity; Equipment Design; Gallium; Indium; Photochemical Processes; Selenium; Silicon; Solar Energy; Tellurium | 2011 |
2 other study(ies) available for tellurium and copper-indium-diselenide
Article | Year |
---|---|
Comparative pulmonary absorption, distribution, and toxicity of copper gallium diselenide, copper indium diselenide, and cadmium telluride in Sprague-Dawley rats.
Copper gallium diselenide (CGS), copper indium diselenide (CIS), and cadmium telluride (CdTe) are novel compounds used in the photovoltaic and semiconductor industries. This study was conducted to characterize the relative toxicities of these compounds and to evaluate the pulmonary absorption and distribution after intratracheal instillation. Female Sprague-Dawley rats were administered a single equimolar dose (70 mM) of CGS (21 mg/kg), CIS (24 mg/kg), CdTe (17 mg/kg), or saline by intratracheal instillation. Bronchoalveolar lavage fluid (BALF) protein, fibronectin, inflammatory cells, lung hydroxyproline, and tissue distribution were measured 1, 3, 7, 14, and 28 days after instillation. Relative lung weights were significantly increased in CIS- and CdTe-treated rats at most time points. Inflammatory lesions in the lungs consisting of an influx of macrophages, lymphocytes, and PMNs were most severe in CdTe-treated rats, intermediate in CIS-treated rats, and minimal in rats receiving CGS. Hyperplasia of alveolar type 2 cells was present in CIS- and CdTe-treated rats and was greatest in CdTe-treated rats. Pulmonary interstitial fibrosis was observed in CdTe-treated rats at all time points. All three compounds caused marked increases in total BALF cell numbers, with the greatest increase observed in CIS-treated rats. BALF protein, fibronectin, and lung hydroxyproline were significantly increased in all treated animals and were highest in CdTe-treated animals. There was no apparent pulmonary absorption or tissue distribution of CGS. Indium levels increased in extrapulmonary tissues of CIS-treated rats, although Cu and Se levels remained unchanged. CdTe was absorbed from the lung to a greater extent than CGS and CIS. Cd and Te levels decreased in the lung and increased in extrapulmonary tissues. Of these compounds CdTe presents the greatest potential health risk because it causes severe pulmonary inflammation and fibrosis and because it is readily absorbed from the lung may potentially cause extrapulmonary toxicity. Topics: Absorption; Animals; Body Weight; Bronchoalveolar Lavage Fluid; Cadmium Compounds; Copper; Female; Fibronectins; Gallium; Hydroxyproline; Indium; Kidney; Lung; Organ Size; Rats; Rats, Sprague-Dawley; Selenium; Spleen; Tellurium | 1997 |
Acute pulmonary toxicity of copper gallium diselenide, copper indium diselenide, and cadmium telluride intratracheally instilled into rats.
Acute toxicity studies were conducted on copper gallium diselenide (CGS), copper indium diselenide (CIS), and cadmium telluride (CT), three novel compounds used in the photovoltaic and semiconductor industries. Female Sprague-Dawley rats (six rats/dose) were administered 0, 12, 25, 50, or 100 mg/kg body wt of CGS, CIS, or CT by intratracheal instillation. At 72 hr after treatment, body weight gain was significantly decreased in the 100 mg/kg CIS group and in all CT dose groups. Lung weights were increased in most chemical-treated rats, with CT causing the greatest increase. Total numbers of cells in bronchoalveolar lavage fluid (BALF) were significantly increased in treated rats and were greatest in the 100 mg/kg CIS group. Differential cell counts of BALF demonstrated a marked decrease in the percentage of alveolar macrophages and an increase in the percentage of polymorphonuclear leukocytes in all dose groups of all three chemicals. Slight to moderate increases in lactate dehydrogenase activity were observed in BALF from CGS- and CIS-treated rats; marked increases were observed in CT-treated rats. BALF protein was significantly increased in rats treated with CIS and CT. Microscopic examination revealed lymphoid hyperplasia in lungs of rats treated with all three chemicals. CT caused necrosis of the terminal bronchiolar epithelium and epithelium of the alveolar duct region with inflammation, prominent fibrin exudates, and type II cell hyperplasia. CGS and CIS also caused intraalveolar inflammation and type II cell hyperplasia, but did not cause the necrosis and fibrin exudate observed in lungs of CT-treated rats. Based on changes in lung weight, BALF indices, and histopathology, CT was the most toxic for the lung; CIS had intermediate toxicity and CGS was the least toxic. The solubilities of CGS and CIS were relatively low and similar at both pH levels and do not readily explain the observed differences in pulmonary toxicity. The solubility of CdTe was considerably greater than that of CGS and CIS and likely contributed to the greater toxicity of this compound. Topics: Animals; Body Weight; Bronchoalveolar Lavage Fluid; Cadmium Compounds; Copper; Dose-Response Relationship, Drug; Female; Gallium; Indium; L-Lactate Dehydrogenase; Lung; Organ Size; Rats; Rats, Sprague-Dawley; Selenium; Tellurium; Trachea | 1995 |