telavancin and iclaprim

telavancin has been researched along with iclaprim* in 5 studies

Reviews

3 review(s) available for telavancin and iclaprim

ArticleYear
[Update on antimicrobial chemotherapy].
    Medecine et maladies infectieuses, 2010, Volume: 40, Issue:3

    There is a constant need for new antibacterial agents because of the unavoidable development of bacterial resistance that follows the introduction of antibiotics in clinical practice. As observed in many fields, innovation generally comes by series. For instance, a wide variety of broad-spectrum antibacterial agents became available between the 1970s and the 1990s, such as cephalosporins, penicillin/beta-lactamase inhibitor combinations, carbapenems, and fluoroquinolones. Over the last 2 decades, the arrival of new antibacterial drugs on the market has dramatically slowed, leaving a frequent gap between isolation of resistant pathogens and effective treatment options. In fact, many pharmaceutical companies focused on the development of narrow-spectrum antibiotics targeted at multidrug-resistant Gram-positive bacteria (e.g. methicillin-resistant Staphylococcus aureus, penicillin resistant Streptococcus pneumoniae, and vancomycin-resistant Enterococcus faecium). Therefore, multidrug-resistant Gram-negative bacteria (e.g. extended-spectrum beta-lactamase-producing Enterobacteriaceae, carbapenem-resistant Pseudomonas aeruginosa and Acinetobacter baumannii) recently emerged and rapidly spread worldwide. Even if some molecules were developed, new molecules for infections caused by these multidrug-resistant Gram-negative bacteria remain remarkably scarce compared to those for Gram-positive infections. This review summarises the major microbiological, pharmacological, and clinical properties of systemic antibiotics recently marketed in France (i.e. linezolid, daptomycin, tigecycline, ertapenem, and doripenem) as well as those of antibacterial drugs currently in development (i.e. ceftobiprole, ceftaroline, dalbavancin, telavancin, oritavancin, iclaprim, and ramoplanin) or available in other countries (i.e. garenoxacin, sitafloxacin, and temocillin).

    Topics: Acetamides; Aminoglycosides; Anti-Infective Agents; beta-Lactams; Carbapenems; Cephalosporins; Daptomycin; Doripenem; Drug Resistance, Bacterial; Ertapenem; Fluoroquinolones; France; Humans; Linezolid; Lipoglycopeptides; Minocycline; Oxazolidinones; Penicillins; Pyrimidines; Teicoplanin; Tigecycline

2010
New antibiotics for healthcare-associated pneumonia.
    Seminars in respiratory and critical care medicine, 2009, Volume: 30, Issue:1

    Current antibiotics available for the treatment of healthcare-associated pneumonia (HCAP) may result in clinical failure due to resistance development, side effect intolerance, or poor pharmacokinetic-pharmacodynamic profiles. New agents active against common HCAP pathogens are needed. The mechanism of action, spectrum of activity, pharmacokinetics, adverse effects, and clinical efficacy of seven new agents in clinical development or recently approved with either methicillin-resistant Staphylococcus aureus (MRSA) or pseudomonal activity are reviewed. They include doripenem, a new antipseudomonal carbapenem; ceftobiprole and ceftaroline, two anti-MRSA cephalosporins; iclaprim, a selective dihydrofolate reductase antagonist; and three glycopeptides, dalbavancin, telavancin, and oritavancin.

    Topics: Aminoglycosides; Anti-Bacterial Agents; Carbapenems; Ceftaroline; Cephalosporins; Cross Infection; Doripenem; Glycopeptides; Lipoglycopeptides; Methicillin-Resistant Staphylococcus aureus; Pneumonia, Bacterial; Pseudomonas Infections; Pyrimidines; Staphylococcal Infections; Teicoplanin

2009
New antimicrobial agents for methicillin-resistant Staphylococcus aureus.
    Critical care and resuscitation : journal of the Australasian Academy of Critical Care Medicine, 2009, Volume: 11, Issue:4

    In bacterial and fungal infections, optimal outcomes are obtained through the timely provision of adequate antimicrobial coverage in an initial anti-infective treatment regimen. However, selecting appropriate antimicrobial regimens to treat infections in the intensive care unit is challenging because of the expansion of antibiotic resistance. Multidrug anti-infective regimens are typically needed to adequately cover common important pathogens in ICUs. Here, we describe novel antibacterial agents in the late stages of clinical development that show potential for treating methicillin-resistant Staphylococcus aureus (MRSA) infections. These include the fifth-generation cephalosporins, ceftaroline and ceftobiprole; the glycopeptides, dalbavancin, oritavancin, and telavancin; and iclaprim.

    Topics: Aminoglycosides; Anti-Bacterial Agents; Ceftaroline; Cephalosporins; Glycopeptides; Humans; Lipoglycopeptides; Methicillin-Resistant Staphylococcus aureus; Pyrimidines; Staphylococcal Infections; Teicoplanin

2009

Other Studies

2 other study(ies) available for telavancin and iclaprim

ArticleYear
Regulatory watch: Non-inferiority-trial discussions impact new drug applications.
    Nature reviews. Drug discovery, 2009, Volume: 8, Issue:1

    Topics: Aminoglycosides; Anti-Infective Agents; Drug Approval; Drug Evaluation; Glycopeptides; Humans; Lipoglycopeptides; Pyrimidines; Therapeutic Equivalency; United States; United States Food and Drug Administration

2009
Antimicrobial development in the era of emerging resistance.
    Mini reviews in medicinal chemistry, 2009, Volume: 9, Issue:8

    Antibiotics currently under study by the Food and Drugs Administration include: faropenem (for treatment of sinusitis, bronchitis, and community-acquired pneumonia), dalbavancin (for catheter infections), telavancin (for treatment of nosocomial pneumonia), oritavancin (for bacteremia), ceftobiprole and iclaprim (for pneumonias). Moreover, all of them would be useful for skin and soft tissue infections.

    Topics: Aminoglycosides; Animals; Anti-Bacterial Agents; Bacteria; beta-Lactams; Cephalosporins; Drug Approval; Drug Resistance, Bacterial; Glycopeptides; Humans; Lipoglycopeptides; Pyrimidines; Skin Diseases, Bacterial; Skin Diseases, Viral; Teicoplanin; United States; United States Food and Drug Administration

2009