telapristone-acetate and ulipristal

telapristone-acetate has been researched along with ulipristal* in 6 studies

Reviews

1 review(s) available for telapristone-acetate and ulipristal

ArticleYear
Clinical utility of progesterone receptor modulators and their effect on the endometrium.
    Current opinion in obstetrics & gynecology, 2009, Volume: 21, Issue:4

    In view of the spate of recent publications related to mifepristone and some second generation progesterone receptor modulators (PRMs), this appears to be an opportune time to view the clinical status of these compounds.. Randomized double-blind placebo-controlled trials have been conducted with mifepristone, CDB-4124 (Proellex), CDB-2914 (VA 2914, Ulipristal) and asoprisnil (J867). All these PRMs are effective in the treatment of uterine fibroids where they are associated with a reduction in pain, bleeding and improvement in quality of life and decrease in fibroid size. CDB-4124 is also efficacious in endometriosis. Long-term treatment with PRMs may be associated with endometrial thickening on ultrasound and there have been reports of endometrial hyperplasia. Several reassuring recent publications have done much to explain the mechanism underlying these endometrial changes. The most common histological finding is cystic glandular dilatation often associated with both admixed estrogen (mitotic) and progestin (secretory) epithelial effects. This histology has not been previously encountered in clinical practice and should not be confused with endometrial hyperplasia. The endometrial thickness is related to this cystic glandular dilatation.. At this stage of development, PRMs cannot be administered for longer than 3 or 4 months. Even over this time, there is improvement of symptoms associated with fibroids and endometriosis. Clinicians and pathologists need to be aware that the endometrial thickening and histological appearance do not represent endometrial hyperplasia.

    Topics: Drug Administration Schedule; Endometriosis; Endometrium; Estrenes; Female; Hormone Antagonists; Humans; Leiomyoma; Mifepristone; Norpregnadienes; Oximes; Randomized Controlled Trials as Topic; Receptors, Progesterone; Time Factors; Uterine Neoplasms

2009

Other Studies

5 other study(ies) available for telapristone-acetate and ulipristal

ArticleYear
Progesterone receptor antagonism inhibits progestogen-related carcinogenesis and suppresses tumor cell proliferation.
    Cancer letters, 2016, 07-01, Volume: 376, Issue:2

    Blockade of the progestogen-progesterone receptor (PR) axis is a novel but untested strategy for breast cancer prevention. We report preclinical data evaluating telapristone acetate (TPA), ulipristal acetate (UPA), and mifepristone.. Tumors were induced with medroxyprogesterone acetate (MPA) plus 7,12-dimethylbenz[a]anthracene (DMBA) in mice, and MPA or progesterone plus N-methyl-N-nitrosourea (MNU) in rats. Mammary gland histology, tumor incidence, latency, multiplicity, burden and histology were evaluated, along with immunohistochemical labeling of pHH3 (proliferation), CD34 (angiogenesis), and estrogen and progesterone receptors (ER and PR). A concentration gradient of TPA, UPA, and mifepristone was tested for growth inhibition of T47D spheroids.. In mouse mammary glands, no tumors formed, but TPA opposed the pro-hyperplastic effects of MPA (p = 0.002). In rats, TPA decreased tumor incidence (p = 0.037 for MPA + TPA vs. MPA, and p = 0.032 for progesterone + TPA vs. progesterone) and tumor burden (p = 0.042 for progesterone + TPA vs. progesterone), with significant decreases in pHH3 and CD34 positive cells. TPA and UPA were superior to mifepristone in growth inhibition of T47D spheroids.. TPA has consistent anti-tumorigenic effects in several models, which are accompanied by decreases in cell proliferation, angiogenesis, and hormone receptor expression.

    Topics: 9,10-Dimethyl-1,2-benzanthracene; Angiogenesis Inhibitors; Animals; Antigens, CD34; Antineoplastic Agents, Hormonal; Cell Line, Tumor; Cell Proliferation; Dose-Response Relationship, Drug; Female; Hormone Antagonists; Mammary Glands, Animal; Mammary Neoplasms, Experimental; Medroxyprogesterone Acetate; Methylnitrosourea; Mice; Mifepristone; Neovascularization, Pathologic; Norpregnadienes; Progesterone; Progestins; Rats; Receptors, Estrogen; Receptors, Progesterone; Time Factors

2016
Resistance to cisplatin and paclitaxel does not affect the sensitivity of human ovarian cancer cells to antiprogestin-induced cytotoxicity.
    Journal of ovarian research, 2014, Volume: 7

    Antiprogestin compounds have been shown to be effective in blocking the growth of ovarian cancer cells of different genetic backgrounds. Herein we studied the anti-ovarian cancer effect of a series of antiprogestins sharing the chemical backbone of the most characterized antiprogestin, mifepristone, but with unique modifications in position C-17 of the steroid ring. We assessed the effect of mifepristone-like antiprogestins on the growth of ovarian cancer cells sensitive to the standard combination therapy cisplatin-paclitaxel or made double-resistant upon six cycles of pulse-selection with the drugs used at clinically relevant concentrations and exposure times.. IGROV-1 and SKOV-3 cells were pulsed with 20 μM cisplatin for 1 h followed by 100 nM paclitaxel for 3 h once a week for six weeks. The cells that did not die and repopulate the culture after the chemotherapies were termed Platinum-Taxane-EScape cells (PTES). Parental cells were compared against their PTES derivatives in their responses to further platinum-taxane treatments. Moreover, both ovarian cancer cells and their PTES siblings were exposed to escalating doses of the various antiprogestin derivatives. We assessed cell growth, viability and sub-G1 DNA content using microcapillary cytometry. Cyclin-dependent kinase inhibitors p21(cip1) and p27(kip1) and cleavage of downstream caspase-3 substrate PARP were used to assess whether cell fate, as a consequence of treatment, was limited to cytostasis or progressed to lethality.. Cells subjected to six pulse-selection cycles of cisplatin-paclitaxel gave rise to sibling derivatives that displayed ~2-7 fold reduction in their sensitivities to further chemotherapy. However, regardless of the sensitivity the cells developed to the combination cisplatin-paclitaxel, they displayed similar sensitivity to the antiprogestins, which blocked their growth in a dose-related manner, with lower concentrations causing cytostasis, and higher concentrations causing lethality.. Antiprogestins carrying a backbone similar to mifepristone are cytotoxic to ovarian cancer cells in a manner that does not depend on the sensitivity the cells have to the standard ovarian cancer chemotherapeutics, cisplatin and paclitaxel. Thus, antiprogestin therapy could be used to treat ovarian cancer cells showing resistance to both platinum and taxanes.

    Topics: Antineoplastic Agents, Hormonal; Cell Line, Tumor; Cell Proliferation; Cisplatin; Drug Resistance, Neoplasm; Drug Screening Assays, Antitumor; Drug Synergism; Estrenes; Female; Furans; Hormone Antagonists; Humans; Inhibitory Concentration 50; Mifepristone; Norpregnadienes; Paclitaxel

2014
The activities of progesterone receptor isoform A and B are differentially modulated by their ligands in a gene-selective manner.
    International journal of cancer, 2008, Jan-01, Volume: 122, Issue:1

    It is known that progesterone receptor (PR) isoform A (PR-A) and isoform B (PR-B) may mediate different effects of progesterone. The objective of this study was to determine if the functions of PR isoforms also vary in response to different PR modulators (PRM). The effects of 7 synthetic PRM were tested in MDA-MB-231 cells engineered to express PR-A, PR-B, or both PR isoforms. The effects of progesterone were similar in cells expressing PR-A or PR-B in which it inhibited growth and induced focal adhesion. On the other hand, synthetic PRM modulated the activity of the PR isoforms differently. RU486, CDB4124, 17alpha-hydroxy CDB4124 and VA2914 exerted agonist activities on cell growth and adhesion via PR-B. Via PR-A, however, these compounds displayed agonist effect on cell growth but induced stellate morphology which was distinct from the agonist's effect. Their dual properties via PR-A were also displayed at the gene expression level: the compounds acted as agonists on cell cycle genes but exhibited antagonistic effect on cell adhesion genes. Introduction of ERalpha by adenoviral vector to these cells did not change PR-A or PR-B mediated effect of PRM radically, but it causes significant cell rounding and modified the magnitudes of the responses to PRM. The findings suggest that the activities of PR isoforms may be modulated by different PRM through gene-specific regulatory mechanisms. This raises an interesting possibility that PRM may be designed to be PR isoform and cellular pathway selective to achieve targeted therapy in breast cancer.

    Topics: Adenoviridae; Blotting, Western; Breast Neoplasms; Cell Cycle; Cell Division; Collagen; Drug Combinations; Female; Fluorescent Antibody Technique; Hormone Antagonists; Humans; Laminin; Ligands; Mifepristone; Neoplasm Invasiveness; Norpregnadienes; Polymerase Chain Reaction; Progesterone; Protein Isoforms; Proteoglycans; Receptors, Progesterone; Transfection; Tumor Cells, Cultured; Wound Healing

2008
In vitro antiprogestational/antiglucocorticoid activity and progestin and glucocorticoid receptor binding of the putative metabolites and synthetic derivatives of CDB-2914, CDB-4124, and mifepristone.
    The Journal of steroid biochemistry and molecular biology, 2004, Volume: 88, Issue:3

    In determining the biological profiles of various antiprogestins, it is important to assess the hormonal and antihormonal activity, selectivity, and potency of their proximal metabolites. The early metabolism of mifepristone is characterized by rapid demethylation and hydroxylation. Similar initial metabolic pathways have been proposed for CDB-2914 (CDB: Contraceptive Development Branch of NICHD) and CDB-4124, and their putative metabolites have been synthesized. We have examined the functional activities and potencies, in various cell-based assays, and relative binding affinities (RBAs) for progesterone receptors (PR) and glucocorticoid receptors (GR) of the putative mono- and didemethylated metabolites of CDB-2914, CDB-4124, and mifepristone and of the 17alpha-hydroxy and aromatic A-ring derivatives of CDB-2914 and CDB-4124. The binding affinities of the monodemethylated metabolites for rabbit uterine PR and human PR-A and PR-B were similar to those of the parent compounds. Monodemethylated mifepristone bound to rabbit thymic GR with higher affinity than monodemethylated CDB-2914 or CDB-4124. T47D-CO cells were used to assess inhibition of R5020-stimulated endogenous alkaline phosphatase activity and transactivation of the PRE(2)-thymidine kinase (tk)-luciferase (LUC) reporter plasmid in transient transfections. The antiprogestational potency was as follows: mifepristone/CDB-2914/CDB-4124/monodemethylated metabolites (IC(50)'s approximately 10(-9)M) > aromatic A-ring derivatives (IC(50)'s approximately 10(-8)M) > didemethylated/17alpha-hydroxy derivatives (IC(50)'s approximately 10(-7)M). Antiglucocorticoid activity was determined by inhibition of dexamethasone-stimulated transcriptional activity in HepG2 cells. The mono- and didemethylated metabolites of CDB-2914 and CDB-4124 had less antiglucocorticoid activity (IC(50)'s approximately 10(-6)M) than monodemethylated mifepristone (IC(50) approximately 10(-8)M) or the other test compounds. At 10(-6)M in transcription assays, none of these compounds showed progestin agonist activity, whereas mifepristone and its monodemethylated metabolite manifested slight glucocorticoid agonist activity. The reduced antiglucocorticoid activity of monodemethylated CDB-2914 and CDB-4124 was confirmed in vivo by the thymus involution assay in adrenalectomized male rats. The aromatic A-ring derivatives-stimulated transcription of an estrogen-responsive reporter plasmid in MCF-7 and T47D-CO human breast cancer cells but were

    Topics: Alkaline Phosphatase; Animals; Cell Line; Enzyme Induction; Hormone Antagonists; Mifepristone; Norpregnadienes; Progestins; Protein Binding; Rabbits; Receptors, Glucocorticoid; Receptors, Progesterone

2004
CDB-4124 and its putative monodemethylated metabolite, CDB-4453, are potent antiprogestins with reduced antiglucocorticoid activity: in vitro comparison to mifepristone and CDB-2914.
    Molecular and cellular endocrinology, 2002, Feb-25, Volume: 188, Issue:1-2

    To obtain selective antiprogestins, we have examined the in vitro antiprogestational/antiglucocorticoid properties of two novel compounds, CDB-4124 and the putative monodemethylated metabolite, CDB-4453, in transcription and receptor binding assays and compared them to CDB-2914 and mifepristone. All four antiprogestins bound with high affinity to rabbit uterine progestin receptors (PR) and recombinant human PR-A and PR-B (rhPR-A, rhPR-B) and were potent inhibitors of R5020-induced transactivation of the PRE2-tk-luciferase (PRE2-tk-LUC) reporter plasmid and endogenous alkaline phosphatase production in T47D-CO human breast cancer cells. None of these compounds exhibited agonist activity in these cells. Induction of luciferase activity was potentiated about five-fold by 8-Br-cAMP under basal conditions and to the same extent in the presence of the PR antagonists. Mifepristone bound to rabbit thymic glucocorticoid receptors (GR) with approximately twice the avidity of the CDB antiprogestins. Inhibition of GR-mediated transcription of PRE2-tk-LUC was assessed in HepG2 human hepatoblastoma cells. Mifepristone exhibited greater antiglucocorticoid activity than CDB-2914, 4124, and 4453, about 12-, 22-, and 185-fold, respectively. Thus, while there was a good correlation between binding to PR and functional activity of these antiprogestins, GR binding was not predictive of their glucocorticoid antagonist activity. In agreement with our in vivo results, CDB-4124 and CDB-4453, as well as CDB-2914, are potent antiprogestins in vitro, but show considerably less antiglucocorticoid activity than mifepristone.

    Topics: 8-Bromo Cyclic Adenosine Monophosphate; Alkaline Phosphatase; Animals; Binding, Competitive; Enzyme Induction; Hormone Antagonists; Luciferases; Mifepristone; Norpregnadienes; Plasmids; Progestins; Rabbits; Rats; Receptors, Androgen; Receptors, Glucocorticoid; Receptors, Progesterone; Recombinant Proteins; Transcriptional Activation; Transfection; Tumor Cells, Cultured

2002