tazettine has been researched along with lycorine* in 6 studies
6 other study(ies) available for tazettine and lycorine
Article | Year |
---|---|
Screening of Amaryllidaceae alkaloids in bulbs and tissue cultures of Narcissus papyraceus and four varieties of N. tazetta.
Narcissus spp. are an economically important crop for medicines in relation with the alkaloids production, mainly galanthamine, an acetylcholinesterase inhibitor used for the treatment of Alzheimer's disease. In this article an extensively study of the phytochemistry of both bulbs of different species and varieties of Narcissus grown in Iran and in vitro culture of these plants was investigated. In particular, the Amaryllidaceae alkaloid profile and the galanthamine and lycorine contents in wild bulbs of Narcissus papyraceus (G5) and four varieties of Narcissus tazetta (N. tazetta var. Shahla (G4), N. tazetta var. Shastpar (G1), N. tazetta var. Meskin (G2), N. tazetta var. Panjehgorbei (G3)), growing in Iran are reported. The alkaloid profiles were investigated by GC-MS and LC-MS and the quantitative analysis was performed using GC-MS. In total, thirty alkaloids were identified among them nine alkaloids were observed with the both methods of analysis. The variety Meskin of N. tazetta (G2), showed the highest diversity of alkaloids and the highest content in galanthamine. On this last species (G2) and on N. tazetta var. Shahla (G4), the effects of auxins 2,4-dichlorophenoxyacetic acid (2,4-D), 4-amino-3,5,6-trichloropicolinic acid (Picloram) and naphthalene acetic acid (NAA) at concentrations of 25 and 50 μM were studied on the induction of callus and its capacity to induce organogenesis and alkaloid diversity. All auxins, at the concentrations of 25 and 50 μM, produced calli. Bulblets and roots were formed on calli grown only in the presence of 25 or 50 μM NAA. GC-MS analyses showed the presence of galanthamine and lycorine in calli, roots and bulblets, with all auxins whatever the concentration used while demethylmaritidine and tazettine were found in differentiated tissue cultures cultivated on the medium containing NAA (25 or 50 μM) or in calli initiated with Picloram (50 μM). Precursor 4'-O-methylnorbelladine (MN) of Amaryllidaceae alkaloids feeding was found to significantly improve the accumulation of both galanthamine (82 μg/g DW) and lycorine (1800 μg/g DW) in bulblets of N. tazetta var. Meskin (G2). Topics: Amaryllidaceae Alkaloids; Cholinesterase Inhibitors; Galantamine; Gas Chromatography-Mass Spectrometry; Iran; Narcissus; Phenanthridines; Plant Extracts; Plant Roots | 2019 |
[Narcissus].
Topics: Abdominal Pain; Amaryllidaceae Alkaloids; Animals; Foodborne Diseases; Galantamine; Humans; Narcissus; Nausea; Phenanthridines | 2014 |
Cytotoxic alkaloids from the whole plants of Zephyranthes candida.
Seven new alkaloids, N-methylhemeanthidine chloride (1), N-methyl-5,6-dihydroplicane (5), O-methylnerinine (6), N-ethoxycarbonylethylcrinasiadine (7), N-ethoxycarbonylpropylcrinasiadine (8), N-phenethylcrinasiadine (9), and N-isopentylcrinasiadine (10), together with eight known alkaloids, hemeanthamin (2), 3-epimacronine (3), (+)-tazettine (4), N-methylcrinasiadine (11), trisphaeridine (12), 5,6-dihydrobicolorine (13), lycorine (14), and nigragillin (15), were isolated from the whole plants of Zephyranthes candida. The structures of the new compounds were established by spectroscopic data interpretation, with single-crystal X-ray diffraction analysis performed on 1. The absolute configuration of 3-epimacronine (3) was determined by single-crystal X-ray diffraction analysis with Cu Kα irradiation. Compounds 1-15 were evaluated for their in vitro cytotoxicity against five human cancer cell lines and the Beas-2B immortalized (noncancerous) human bronchial epithelial cell line. Compounds 1, 2, 9, and 14 exhibited cytotoxicity with IC(50) values ranging from 0.81 to 13 μM with selectivity indices as high as 10 when compared to the Beas-2B cell line. Topics: Amaryllidaceae Alkaloids; Antineoplastic Agents, Phytogenic; Crystallography, X-Ray; Dioxoles; Drug Screening Assays, Antitumor; Drugs, Chinese Herbal; Humans; Liliaceae; Molecular Conformation; Molecular Structure; Nuclear Magnetic Resonance, Biomolecular; Phenanthridines | 2012 |
Alkaloid diversity in Galanthus elwesii and Galanthus nivalis.
Seventy alkaloids of galanthamine, lycorine, homolycorine, tazettine, haemanthamine, narciclasine, and tyramine types were detected by GC/MS in 25 Galanthus elwesii and seven Galanthus nivalis populations, collected from different locations in Bulgaria. Intraspecies diversity in the alkaloid profiles regarding the main alkaloid types (chemotypes) was observed. Tyramine-type protoalkaloids (namely, hordenine and its derivatives) were dominant in 19 populations of G. elwesii. In other populations of G. elwesii, the plants accumulated mainly homolycorine-, lycorine-, and galanthamine-type alkaloids. The alkaloid profiles of G. nivalis were dominated by narciclasine-, galanthamine-, lycorine-, haemanthamine-, or tazettine-type compounds. Geographical distribution of chemotypes indicated a relationship between populations, since adjacent populations often displayed similar alkaloid profiles. The results from year-to-year sampling and transplantation experiments imply genetic determination of alkaloid synthesis in the two studied species of Galanthus. Topics: Alkaloids; Amaryllidaceae Alkaloids; Galantamine; Galanthus; Gas Chromatography-Mass Spectrometry; Phenanthridines | 2011 |
Amaryllidaceae alkaloids belonging to different structural subgroups display activity against apoptosis-resistant cancer cells.
Fifteen Amaryllidaceae alkaloids (1-15) were evaluated for their antiproliferative activities against six distinct cancer cell lines. Several of these natural products were found to have low micromolar antiproliferative potencies. The log P values of these compounds did not influence their observed activity. When active, the compounds displayed cytostatic, not cytotoxic activity, with the exception of pseudolycorine (3), which exhibited cytotoxic profiles. The active compounds showed similar efficacies toward cancer cells irrespective of whether the cell lines were responsive or resistant to proapoptotic stimuli. Altogether, the data from the present study revealed that lycorine (1), amarbellisine (6), haemanthamine (14), and haemanthidine (15) are potentially useful chemical scaffolds to generate further compounds to combat cancers associated with poor prognoses, especially those naturally resistant to apoptosis, such as glioblastoma, melanoma, non-small-cell lung, and metastatic cancers. Topics: Amaryllidaceae Alkaloids; Antineoplastic Agents, Phytogenic; Apoptosis; Drug Resistance, Neoplasm; Drug Screening Assays, Antitumor; Humans; Molecular Structure; Phenanthridines | 2010 |
Antiproliferative amaryllidaceae alkaloids isolated from the bulbs of Sprekelia formosissima and Hymenocallis x festalis.
Seven alkaloids were isolated from Sprekelia formosissima, and five from Hymenocallis x festalis. Tazettine, lycorine, haemanthidine and haemanthamine were evaluated for antiproliferative and multidrug resistance (mdr) reversing activity on mouse lymphoma cells. Lycorine, haemanthidine and haemanthamine displayed pronounced cell growth inhibitory activities against both drug-sensitive and drug-resistant cell lines, but did not significantly inhibit mdr-1 p-glycoprotein. Thus, the tested alkaloids are apparently not substrates for the mdr efflux pump. Assays for interactions with DNA and RNA revealed that the antiproliferative effects of lycorine and haemanthamine result from their complex formation with RNA. Topics: Alkaloids; Amaryllidaceae Alkaloids; Aniline Compounds; Animals; Antineoplastic Agents, Phytogenic; Dioxoles; DNA; Drug Resistance, Multiple; Leukemia L5178; Magnoliopsida; Mice; Molecular Structure; Nucleic Acid Denaturation; Phenanthridines; Plant Stems; RNA, Transfer; Tumor Cells, Cultured; Verapamil | 2002 |