taxifolin and diosmetin

taxifolin has been researched along with diosmetin in 8 studies

Research

Studies (8)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's1 (12.50)18.2507
2000's0 (0.00)29.6817
2010's6 (75.00)24.3611
2020's1 (12.50)2.80

Authors

AuthorsStudies
Augereau, JM; Billon, M; Gleye, J; Herbert, JM; Lale, A; Leconte, M1
Batista-Gonzalez, A; Brunhofer, G; Fallarero, A; Gopi Mohan, C; Karlsson, D; Shinde, P; Vuorela, P1
Fernandes, E; Freitas, M; Porto, G; Ribeiro, D; Silva, AM; Tomé, SM1
Cabrita, EJ; Fernandes, E; Freitas, M; Marques, MM; Porto, G; Ribeiro, D; Silva, AM; Tomé, SM1
Bicknell, KA; Farrimond, JA; Putnam, SE; Swioklo, S; Watson, KA; Williamson, EM1
Albiñana, CB; Brynda, J; Fanfrlík, J; Flieger, M; Hodek, J; Karlukova, E; Konvalinka, J; Kožíšek, M; Machara, A; Majer, P; Radilová, K; Weber, J; Zima, V1
Arriero, Mdel M; Monjo, M; Ramis, JM; Satué, M1
Gómez-Florit, M; Monjo, M; Ramis, JM1

Other Studies

8 other study(ies) available for taxifolin and diosmetin

ArticleYear
Ability of different flavonoids to inhibit the procoagulant activity of adherent human monocytes.
    Journal of natural products, 1996, Volume: 59, Issue:3

    Topics: Amino Acid Sequence; Blood Coagulation; Cell Adhesion; Endotoxins; Flavonoids; Humans; In Vitro Techniques; Interleukin-1; Molecular Sequence Data; Monocytes

1996
Exploration of natural compounds as sources of new bifunctional scaffolds targeting cholinesterases and beta amyloid aggregation: the case of chelerythrine.
    Bioorganic & medicinal chemistry, 2012, Nov-15, Volume: 20, Issue:22

    Topics: Acetylcholinesterase; Amyloid beta-Peptides; Benzophenanthridines; Binding Sites; Butyrylcholinesterase; Catalytic Domain; Cholinesterase Inhibitors; Humans; Isoquinolines; Kinetics; Molecular Docking Simulation; Structure-Activity Relationship

2012
Modulation of human neutrophils' oxidative burst by flavonoids.
    European journal of medicinal chemistry, 2013, Volume: 67

    Topics: Flavonoids; Humans; Luminescent Measurements; Molecular Structure; Neutrophils; Oxidation-Reduction

2013
Inhibition of LOX by flavonoids: a structure-activity relationship study.
    European journal of medicinal chemistry, 2014, Jan-24, Volume: 72

    Topics: Dose-Response Relationship, Drug; Flavonoids; Glycine max; Humans; Leukotriene B4; Lipoxygenase; Molecular Structure; Neutrophils; Structure-Activity Relationship

2014
Defining Key Structural Determinants for the Pro-osteogenic Activity of Flavonoids.
    Journal of natural products, 2015, Nov-25, Volume: 78, Issue:11

    Topics: Cell Differentiation; Flavonoids; Humans; Mesenchymal Stem Cells; Molecular Structure; Osteogenesis; Signal Transduction; Structure-Activity Relationship

2015
Unraveling the anti-influenza effect of flavonoids: Experimental validation of luteolin and its congeners as potent influenza endonuclease inhibitors.
    European journal of medicinal chemistry, 2020, Dec-15, Volume: 208

    Topics: Antiviral Agents; Crystallography, X-Ray; Drug Evaluation, Preclinical; Endonucleases; Enzyme Assays; Enzyme Inhibitors; Flavonoids; Influenza A virus; Microbial Sensitivity Tests; Molecular Structure; Protein Binding; Protein Domains; RNA-Dependent RNA Polymerase; Structure-Activity Relationship; Viral Proteins

2020
Quercitrin and taxifolin stimulate osteoblast differentiation in MC3T3-E1 cells and inhibit osteoclastogenesis in RAW 264.7 cells.
    Biochemical pharmacology, 2013, Nov-15, Volume: 86, Issue:10

    Topics: Animals; Biomarkers; Cell Differentiation; Cell Line; Cell Survival; Flavonoids; Gene Expression; Integrin-Binding Sialoprotein; Macrophages; Mice; Osteoblasts; Osteocalcin; Osteoclasts; Osteogenesis; Quercetin

2013
Identification of quercitrin as a potential therapeutic agent for periodontal applications.
    Journal of periodontology, 2014, Volume: 85, Issue:7

    Topics: Adult; Anti-Bacterial Agents; Antioxidants; Cell Culture Techniques; Cell Survival; Cells, Cultured; Collagen; Collagen Type III; Decorin; Female; Fibroblasts; Flavonoids; Gingiva; Humans; Interleukin-6; Male; Matrix Metalloproteinase 1; Middle Aged; Quercetin; Reactive Oxygen Species; Staphylococcus epidermidis; Tissue Inhibitor of Metalloproteinase-1; Wound Healing; Young Adult

2014