taxifolin has been researched along with chlorogenic acid in 7 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (14.29) | 29.6817 |
2010's | 4 (57.14) | 24.3611 |
2020's | 2 (28.57) | 2.80 |
Authors | Studies |
---|---|
Karioti, A; Konstantinopoulou, M; Skaltsa, H; Skaltsas, S | 1 |
Batista-Gonzalez, A; Brunhofer, G; Fallarero, A; Gopi Mohan, C; Karlsson, D; Shinde, P; Vuorela, P | 1 |
Cahlikova, L; Chlebek, J; Havrankova, J; Hofman, J; Hostalkova, A; Lundova, T; Musilek, K; Novotna, E; Wsol, V; Zemanova, L | 1 |
Albiñana, CB; Brynda, J; Fanfrlík, J; Flieger, M; Hodek, J; Karlukova, E; Konvalinka, J; Kožíšek, M; Machara, A; Majer, P; Radilová, K; Weber, J; Zima, V | 1 |
Gawas, UB; Majik, MS; Mandrekar, VK | 1 |
Canali, R; Frontela, C; Martínez, C; Ros, G; Sánchez-Siles, LM; Virgili, F | 1 |
Barros, L; Ferreira, IC; José Alves, M; Pereira, C; Santos-Buelga, C | 1 |
1 review(s) available for taxifolin and chlorogenic acid
Article | Year |
---|---|
Next generation quorum sensing inhibitors: Accounts on structure activity relationship studies and biological activities.
Topics: 4-Butyrolactone; Anti-Bacterial Agents; Biofilms; Cobalt; Coordination Complexes; Drug Design; Furans; Quorum Sensing; Staphylococcus aureus; Structure-Activity Relationship | 2020 |
6 other study(ies) available for taxifolin and chlorogenic acid
Article | Year |
---|---|
Sesquiterpene lactones from Anthemis altissima and their anti-Helicobacter pylori activity.
Topics: Asteraceae; Gram-Negative Bacteria; Gram-Positive Bacteria; Greece; Helicobacter pylori; Lactones; Microbial Sensitivity Tests; Molecular Structure; Nuclear Magnetic Resonance, Biomolecular; Plants, Medicinal; Sesquiterpenes; Stereoisomerism | 2003 |
Exploration of natural compounds as sources of new bifunctional scaffolds targeting cholinesterases and beta amyloid aggregation: the case of chelerythrine.
Topics: Acetylcholinesterase; Amyloid beta-Peptides; Benzophenanthridines; Binding Sites; Butyrylcholinesterase; Catalytic Domain; Cholinesterase Inhibitors; Humans; Isoquinolines; Kinetics; Molecular Docking Simulation; Structure-Activity Relationship | 2012 |
Flavones Inhibit the Activity of AKR1B10, a Promising Therapeutic Target for Cancer Treatment.
Topics: Aldehyde Reductase; Aldo-Keto Reductases; Apigenin; Daunorubicin; Enzyme Inhibitors; Flavones; Flavonoids; HCT116 Cells; Humans; Luteolin; Molecular Conformation; Molecular Structure; Neoplasms | 2015 |
Unraveling the anti-influenza effect of flavonoids: Experimental validation of luteolin and its congeners as potent influenza endonuclease inhibitors.
Topics: Antiviral Agents; Crystallography, X-Ray; Drug Evaluation, Preclinical; Endonucleases; Enzyme Assays; Enzyme Inhibitors; Flavonoids; Influenza A virus; Microbial Sensitivity Tests; Molecular Structure; Protein Binding; Protein Domains; RNA-Dependent RNA Polymerase; Structure-Activity Relationship; Viral Proteins | 2020 |
Stability of Pycnogenol® as an ingredient in fruit juices subjected to in vitro gastrointestinal digestion.
Topics: Ananas; Beverages; Biflavonoids; Caffeic Acids; Catechin; Chlorogenic Acid; Chromatography, High Pressure Liquid; Coumaric Acids; Digestion; Flavonoids; Food, Fortified; Fruit; Gallic Acid; In Vitro Techniques; Phenols; Pinus; Plant Bark; Plant Extracts; Plant Preparations; Polyphenols; Proanthocyanidins; Quercetin | 2011 |
Artichoke and milk thistle pills and syrups as sources of phenolic compounds with antimicrobial activity.
Topics: Anti-Infective Agents; Antioxidants; Cynara scolymus; Dietary Supplements; Disaccharides; Escherichia coli; Flavonoids; Luteolin; Methicillin-Resistant Staphylococcus aureus; Phenol; Plant Preparations; Proteus mirabilis; Pseudomonas aeruginosa; Quercetin; Quinic Acid; Silybin; Silybum marianum; Silymarin; Vanillic Acid | 2016 |