taxifolin and 4-hydroxybenzoic acid

taxifolin has been researched along with 4-hydroxybenzoic acid in 5 studies

Research

Studies (5)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's1 (20.00)18.2507
2000's0 (0.00)29.6817
2010's4 (80.00)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Chang, CJ; Geahlen, RL1
Matsuda, H; Nakamura, S; Nakashima, S; Oda, Y; Xu, F; Yoshikawa, M1
Dong, MS; Hong, CY; Kim, IS; Kim, SA; Na, CS; Park, MH; Yoo, HH1
Cahlikova, L; Chlebek, J; Havrankova, J; Hofman, J; Hostalkova, A; Lundova, T; Musilek, K; Novotna, E; Wsol, V; Zemanova, L1
Akagi, K; Hanaki, M; Irie, K; Murakami, K1

Reviews

1 review(s) available for taxifolin and 4-hydroxybenzoic acid

ArticleYear
Protein-tyrosine kinase inhibition: mechanism-based discovery of antitumor agents.
    Journal of natural products, 1992, Volume: 55, Issue:11

    Topics: Animals; Antineoplastic Agents; Drug Screening Assays, Antitumor; Humans; Protein-Tyrosine Kinases

1992

Other Studies

4 other study(ies) available for taxifolin and 4-hydroxybenzoic acid

ArticleYear
Melanogenesis inhibitors from the desert plant Anastatica hierochuntica in B16 melanoma cells.
    Bioorganic & medicinal chemistry, 2010, Mar-15, Volume: 18, Issue:6

    Topics: Agaricales; Animals; Antineoplastic Agents; Brassicaceae; Cell Proliferation; Cell Survival; Drug Screening Assays, Antitumor; Enzyme Inhibitors; Intramolecular Oxidoreductases; Melanoma, Experimental; Membrane Glycoproteins; Mice; Monophenol Monooxygenase; Oxidoreductases; Plant Extracts; RNA, Messenger; Structure-Activity Relationship; Tumor Cells, Cultured

2010
Inhibitory effect of Rhus verniciflua Stokes extract on human aromatase activity; butin is its major bioactive component.
    Bioorganic & medicinal chemistry letters, 2014, Apr-01, Volume: 24, Issue:7

    Topics: Aromatase; Aromatase Inhibitors; Benzopyrans; Dose-Response Relationship, Drug; Humans; Medicine, Traditional; Molecular Structure; Plant Extracts; Plant Structures; Rhus; Structure-Activity Relationship

2014
Flavones Inhibit the Activity of AKR1B10, a Promising Therapeutic Target for Cancer Treatment.
    Journal of natural products, 2015, Nov-25, Volume: 78, Issue:11

    Topics: Aldehyde Reductase; Aldo-Keto Reductases; Apigenin; Daunorubicin; Enzyme Inhibitors; Flavones; Flavonoids; HCT116 Cells; Humans; Luteolin; Molecular Conformation; Molecular Structure; Neoplasms

2015
Structural insights into mechanisms for inhibiting amyloid β42 aggregation by non-catechol-type flavonoids.
    Bioorganic & medicinal chemistry, 2016, Jan-15, Volume: 24, Issue:2

    Topics: Amyloid beta-Peptides; Dose-Response Relationship, Drug; Flavonoids; Molecular Structure; Peptide Fragments; Structure-Activity Relationship

2016