Page last updated: 2024-08-21

taurolithocholic acid and cholecystokinin

taurolithocholic acid has been researched along with cholecystokinin in 6 studies

Research

Studies (6)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's1 (16.67)18.2507
2000's2 (33.33)29.6817
2010's2 (33.33)24.3611
2020's1 (16.67)2.80

Authors

AuthorsStudies
Bartoszko-Malik, A; Raufman, JP; Zimniak, P1
Barrow, SL; Gerasimenko, OV; Petersen, OH; Tepikin, AV; Voronina, SG1
Fischer, L; Friess, H; Gukovskaya, AS; Gukovsky, I; Mareninova, OA; Pandol, SJ; Penninger, JM1
Barrow, SL; da Silva Xavier, G; Gerasimenko, OV; Petersen, OH; Rutter, GA; Simpson, AW; Tepikin, AV; Voronina, SG1
Armstrong, J; Cash, N; Chvanov, M; Criddle, DN; Huang, W; Mukherjee, R; Murphy, MP; Sutton, R; Szatmary, P; Tepikin, AV; Wen, L1
Awais, M; Beckett, AJ; Chvanov, M; Criddle, DN; De Faveri, F; Haynes, L; Mayer, U; Moore, D; Pollock, L; Prior, IA; Sutton, R; Tepikin, AV; Voronina, S; Wileman, T1

Other Studies

6 other study(ies) available for taurolithocholic acid and cholecystokinin

ArticleYear
Lithocholyltaurine interacts with cholinergic receptors on dispersed chief cells from guinea pig stomach.
    The American journal of physiology, 1998, Volume: 274, Issue:6

    Topics: 8-Bromo Cyclic Adenosine Monophosphate; Animals; Atropine; Carbachol; Chief Cells, Gastric; Cholagogues and Choleretics; Cholecystokinin; Guinea Pigs; Male; N-Methylscopolamine; Parasympatholytics; Pepsinogens; Receptors, Cholinergic; Sincalide; Taurolithocholic Acid

1998
Effects of secretagogues and bile acids on mitochondrial membrane potential of pancreatic acinar cells: comparison of different modes of evaluating DeltaPsim.
    The Journal of biological chemistry, 2004, Jun-25, Volume: 279, Issue:26

    Topics: Animals; Bile Acids and Salts; Bombesin; Bucladesine; Calcium; Calcium Signaling; Carbonyl Cyanide m-Chlorophenyl Hydrazone; Cholecystokinin; Enzyme Inhibitors; Intracellular Membranes; Membrane Potentials; Mice; Mitochondria; Pancreas; Rhodamines; Sincalide; Taurochenodeoxycholic Acid; Taurocholic Acid; Taurodeoxycholic Acid; Taurolithocholic Acid; Thapsigargin; Uncoupling Agents

2004
Phosphatidylinositol 3-kinase facilitates bile acid-induced Ca(2+) responses in pancreatic acinar cells.
    American journal of physiology. Gastrointestinal and liver physiology, 2007, Volume: 292, Issue:3

    Topics: Androstadienes; Animals; Bile Acids and Salts; Calcium; Cells, Cultured; Cholecystokinin; Chromones; Enzyme Activation; Enzyme Inhibitors; Inositol 1,4,5-Trisphosphate Receptors; Ionomycin; Mice; Mice, Inbred C57BL; Mice, Knockout; Morpholines; Pancreas, Exocrine; Phosphatidylinositol 3-Kinases; Phosphoinositide-3 Kinase Inhibitors; Phosphorylation; Proto-Oncogene Proteins c-akt; Rats; Rats, Sprague-Dawley; Sarcoplasmic Reticulum Calcium-Transporting ATPases; Taurochenodeoxycholic Acid; Taurolithocholic Acid; Thapsigargin; Wortmannin

2007
Dynamic changes in cytosolic and mitochondrial ATP levels in pancreatic acinar cells.
    Gastroenterology, 2010, Volume: 138, Issue:5

    Topics: Adenosine Triphosphate; Animals; Antimetabolites; Calcium; Cells, Cultured; Cholecystokinin; Cytosol; Enzyme Inhibitors; Fatty Acids, Monounsaturated; Glycolysis; Ionophores; Kinetics; Luciferases; Male; Mice; Mitochondria; Oxidative Phosphorylation; Pancreas, Exocrine; Taurolithocholic Acid; Transfection

2010
Effects of the mitochondria-targeted antioxidant mitoquinone in murine acute pancreatitis.
    Mediators of inflammation, 2015, Volume: 2015

    Topics: Acinar Cells; Acute Disease; Animals; Antioxidants; Apoptosis; Ceruletide; Cholecystokinin; Disease Models, Animal; Inflammation; Male; Membrane Potential, Mitochondrial; Mice; Mitochondria; Necrosis; Organophosphorus Compounds; Oxidative Stress; Pancreas; Pancreatitis; Reactive Oxygen Species; Taurolithocholic Acid; Ubiquinone

2015
LAP-like non-canonical autophagy and evolution of endocytic vacuoles in pancreatic acinar cells.
    Autophagy, 2020, Volume: 16, Issue:7

    Topics: 1,2-Dihydroxybenzene-3,5-Disulfonic Acid Disodium Salt; Acinar Cells; Actins; Animals; Autophagy; Autophagy-Related Protein-1 Homolog; Autophagy-Related Proteins; Chloroquine; Cholecystokinin; Endocytosis; Mice, Inbred C57BL; Microtubule-Associated Proteins; Onium Compounds; Pancreas; Phagocytosis; Phosphatidylinositol 3-Kinases; Protein Domains; Protein Kinase Inhibitors; Reactive Oxygen Species; Resveratrol; Taurolithocholic Acid; Trypsinogen; Vacuolar Proton-Translocating ATPases; Vacuoles

2020