taurochenodeoxycholic-acid has been researched along with 4-phenylbutyric-acid* in 43 studies
3 review(s) available for taurochenodeoxycholic-acid and 4-phenylbutyric-acid
Article | Year |
---|---|
Tauro-Urso-Deoxycholic Acid Trials in Amyotrophic Lateral Sclerosis: What is Achieved and What to Expect.
Phase II studies on tauro-urso-deoxycholic acid (TUDCA) raised the promise of safety and efficacy in patients with amyotrophic lateral sclerosis, a currently incurable and devastating disease. We review the available evidence on the efficacy and safety of TUDCA, administered alone or in combination, by analyzing and comparing published and ongoing studies on amyotrophic lateral sclerosis. Two independent phase II studies (using TUDCA solo or combined with sodium phenylbutyrate) showed similar efficacy in slowing disease progression measured by functional scales. One open-label follow-up TUDCA+sodium phenylbutyrate study suggested a benefit on survival. Two subsequent phase III studies with TUDCA (solo or combined with sodium phenylbutyrate) have been initiated and are currently ongoing. Their completion is expected by the end of 2023 and beginning of 2024. Evidence collected by phase II studies indicates that there are no safety concerns in patients with amyotrophic lateral sclerosis. The efficacy shown in phase II studies was considered sufficient to grant approval in some countries but not in others, owing to discrepant views on the strength of evidence. It will be necessary to wait for the results of ongoing phase III studies to attain a full appreciation of these data. Topics: Amyotrophic Lateral Sclerosis; Humans; Phenylbutyrates; Taurochenodeoxycholic Acid | 2023 |
Sodium Phenylbutyrate and Ursodoxicoltaurine: First Approval.
Topics: Adult; Amyotrophic Lateral Sclerosis; Humans; Pharmaceutical Preparations; Phenylbutyrates; Taurochenodeoxycholic Acid | 2022 |
Thematic review series: Adipocyte Biology. Adipocyte stress: the endoplasmic reticulum and metabolic disease.
In the context of obesity and its related maladies, the adipocyte plays a central role in the balance, or imbalance, of metabolic homeostasis. An obese, hypertrophic adipocyte is challenged by many insults, including surplus energy, inflammation, insulin resistance, and considerable stress to various organelles. The endoplasmic reticulum (ER) is one such vital organelle that demonstrates significant signs of stress and dysfunction in obesity and insulin resistance. Under normal conditions, the ER must function in the unique and trying environment of the adipocyte, adapting to meet the demands of increased protein synthesis and secretion, energy storage in the form of triglyceride droplet formation, and nutrient sensing that are particular to the differentiated fat cell. When nutrients are in pathological excess, the ER is overwhelmed and the unfolded protein response (UPR) is activated. Remarkably, the consequences of UPR activation have been causally linked to the development of insulin resistance through a multitude of possible mechanisms, including c-jun N-terminal kinase activation, inflammation, and oxidative stress. This review will focus on the function of the ER under normal conditions in the adipocyte and the pathological effects of a stressed ER contributing to adipocyte dysfunction and a thwarted metabolic homeostasis. Topics: Adipocytes; Animals; Cholesterol; Endoplasmic Reticulum; Humans; Inflammation; Lipid Metabolism; Metabolic Diseases; Obesity; Phenylbutyrates; Protein Folding; Proteins; Stress, Physiological; Taurochenodeoxycholic Acid | 2007 |
2 trial(s) available for taurochenodeoxycholic-acid and 4-phenylbutyric-acid
Article | Year |
---|---|
Long-term survival of participants in the CENTAUR trial of sodium phenylbutyrate-taurursodiol in amyotrophic lateral sclerosis.
An orally administered, fixed-dose coformulation of sodium phenylbutyrate-taurursodiol (PB-TURSO) significantly slowed functional decline in a randomized, placebo-controlled, phase 2 trial in ALS (CENTAUR). Herein we report results of a long-term survival analysis of participants in CENTAUR. In CENTAUR, adults with ALS were randomized 2:1 to PB-TURSO or placebo. Participants completing the 6-month (24-week) randomized phase were eligible to receive PB-TURSO in the open-label extension. An all-cause mortality analysis (35-month maximum follow-up post-randomization) incorporated all randomized participants. Participants and site investigators were blinded to treatment assignments through the duration of follow-up of this analysis. Vital status was obtained for 135 of 137 participants originally randomized in CENTAUR. Median overall survival was 25.0 months among participants originally randomized to PB-TURSO and 18.5 months among those originally randomized to placebo (hazard ratio, 0.56; 95% confidence interval, 0.34-0.92; P = .023). Initiation of PB-TURSO treatment at baseline resulted in a 6.5-month longer median survival as compared with placebo. Combined with results from CENTAUR, these results suggest that PB-TURSO has both functional and survival benefits in ALS. Topics: Adolescent; Adult; Aged; Aged, 80 and over; Amyotrophic Lateral Sclerosis; Double-Blind Method; Female; Humans; Male; Middle Aged; Neuroprotective Agents; Phenylbutyrates; Taurochenodeoxycholic Acid; Time; Young Adult | 2021 |
Trial of Sodium Phenylbutyrate-Taurursodiol for Amyotrophic Lateral Sclerosis.
Sodium phenylbutyrate and taurursodiol have been found to reduce neuronal death in experimental models. The efficacy and safety of a combination of the two compounds in persons with amyotrophic lateral sclerosis (ALS) are not known.. In this multicenter, randomized, double-blind trial, we enrolled participants with definite ALS who had had an onset of symptoms within the previous 18 months. Participants were randomly assigned in a 2:1 ratio to receive sodium phenylbutyrate-taurursodiol (3 g of sodium phenylbutyrate and 1 g of taurursodiol, administered once a day for 3 weeks and then twice a day) or placebo. The primary outcome was the rate of decline in the total score on the Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised (ALSFRS-R; range, 0 to 48, with higher scores indicating better function) through 24 weeks. Secondary outcomes were the rates of decline in isometric muscle strength, plasma phosphorylated axonal neurofilament H subunit levels, and the slow vital capacity; the time to death, tracheostomy, or permanent ventilation; and the time to death, tracheostomy, permanent ventilation, or hospitalization.. A total of 177 persons with ALS were screened for eligibility, and 137 were randomly assigned to receive sodium phenylbutyrate-taurursodiol (89 participants) or placebo (48 participants). In a modified intention-to-treat analysis, the mean rate of change in the ALSFRS-R score was -1.24 points per month with the active drug and -1.66 points per month with placebo (difference, 0.42 points per month; 95% confidence interval, 0.03 to 0.81; P = 0.03). Secondary outcomes did not differ significantly between the two groups. Adverse events with the active drug were mainly gastrointestinal.. Sodium phenylbutyrate-taurursodiol resulted in slower functional decline than placebo as measured by the ALSFRS-R score over a period of 24 weeks. Secondary outcomes were not significantly different between the two groups. Longer and larger trials are necessary to evaluate the efficacy and safety of sodium phenylbutyrate-taurursodiol in persons with ALS. (Funded by Amylyx Pharmaceuticals and others; CENTAUR ClinicalTrials.gov number, NCT03127514.). Topics: Aged; Amyotrophic Lateral Sclerosis; Disease Progression; Double-Blind Method; Drug Combinations; Female; Humans; Intention to Treat Analysis; Male; Middle Aged; Phenylbutyrates; Severity of Illness Index; Taurochenodeoxycholic Acid; Treatment Outcome | 2020 |
38 other study(ies) available for taurochenodeoxycholic-acid and 4-phenylbutyric-acid
Article | Year |
---|---|
Effects of Tauroursodeoxycholic Acid and 4-Phenylbutyric Acid on Selenium Distribution in Mice Model with Type 1 Diabetes.
The effect of selenium on diabetes is significant. As pharmaceutical chaperones, tauroursodeoxycholic acid (TUDCA) and 4-phenylbutyric acid (4-PBA) can effectively improve the oxidative stress of the endoplasmic reticulum. This study established a mice model with type 1 diabetes (T1D) to evaluate the effects of pharmaceutical chaperones on selenium distribution. Streptozotocin was used to induce Friend virus B-type mice to establish a T1D mice model. Mice were administered with TUDCA or 4-PBA. Selenium levels in different tissues were measured by inductively coupled plasma-mass spectroscopy (ICP-MS). After treatment with TUDCA and 4-PBA, related laboratory findings such as glucose and glycated serum protein were significantly reduced and were closer to normal levels. At 2 weeks, 4-PBA normalized selenium levels in the heart, and 4-PBA and TUDCA maintained the selenium in the liver, kidney, and muscle at normal. At 2 months, 4-PBA and TUDCA maintained the selenium in the heart, liver, and kidney at normal levels. The serum selenium had a positive correlation with zinc and copper in the diabetes group and the control group, while the serum selenium had no significant association with magnesium and calcium at 2 weeks and 2 months. TUDCA and 4-PBA have crucial effects on selenium distribution in diabetic mice, and further research is needed to research their internal mechanisms. Topics: Animals; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 1; Disease Models, Animal; Endoplasmic Reticulum Stress; Mice; Pharmaceutical Preparations; Selenium; Taurochenodeoxycholic Acid | 2023 |
Sodium Phenylbutyrate and Taurursodiol.
Topics: Humans; Phenylbutyrates; Taurochenodeoxycholic Acid | 2023 |
Major advances in amyotrophic lateral sclerosis in 2020.
Topics: Amyotrophic Lateral Sclerosis; Clinical Trials as Topic; Drug Combinations; Humans; Oligonucleotides; Phenylbutyrates; Superoxide Dismutase-1; Taurochenodeoxycholic Acid | 2021 |
Endoplasmic reticulum stress regulates epithelial‑mesenchymal transition in human lens epithelial cells.
Epithelial‑to‑mesenchymal transition (EMT) of human lens epithelial cells (HLECs) serve an important role in cataract formation. The endoplasmic reticulum stress response (ER stress) has been demonstrated to regulate EMT in a number of tissues. The aim of the present study was to demonstrate the role of ER stress on EMT in HLECs. HLECs were treated with tunicamycin (TM) or thapsigargin (TG) to disturb ER homeostasis, and 4‑phenylbutyric acid (PBA) or sodium tauroursodeoxycholate (TUDCA) to restore ER homeostasis. Cell morphology was evaluated after 24 h. The long axis and aspect ratio of the cells were analyzed using ImageJ software. The results demonstrated that HLECs adopted an elongated morphology following treatment with TG, and the cellular aspect ratio increased. However, this morphological change was not observed following combination treatment with TG and PBA. Western blot analysis and immunofluorescence staining were used to measure the protein expression levels. A wound‑healing assay was performed to evaluate cell migration. Treatment with TM or TG increased the expression of the ER stress markers glucose‑regulated protein 78, phosphorylated eukaryotic initiation factor 2α, activating transcription factor (ATF)6, ATF4 and inositol‑requiring protein 1α and the EMT markers fibronectin, vimentin, α‑smooth muscle actin and neural cadherin. Furthermore, treatment with TM or TG decreased the expression of the epithelial cell marker epithelial cadherin and enhanced cell migration, which effects were inhibited following treatment with PBA or TUDCA. These results indicates that enhanced ER stress induced EMT and subsequently increased cell migration in HLECs in vitro. Topics: Cataract; Cell Line; Endoplasmic Reticulum Stress; Epithelial Cells; Epithelial-Mesenchymal Transition; Eye Proteins; Humans; Lens, Crystalline; Phenylbutyrates; Taurochenodeoxycholic Acid; Thapsigargin; Tunicamycin | 2020 |
Chemical chaperones reverse early suppression of regulatory circuits during unfolded protein response in B cells from common variable immunodeficiency patients.
B cells orchestrate pro-survival and pro-apoptotic inputs during unfolded protein response (UPR) to translate, fold, sort, secrete and recycle immunoglobulins. In common variable immunodeficiency (CVID) patients, activated B cells are predisposed to an overload of abnormally processed, misfolded immunoglobulins. Using highly accurate transcript measurements, we show that expression of UPR genes and immunoglobulin chains differs qualitatively and quantitatively during the first 4 h of chemically induced UPR in B cells from CVID patients and a healthy subject. We tested thapsigargin or tunicamycin as stressors and 4-phenylbutyrate, dimethyl sulfoxide and tauroursodeoxycholic acid as chemical chaperones. We found an early and robust decrease of the UPR upon endoplasmic reticulum (ER) stress in CVID patient cells compared to the healthy control consistent with the disease phenotype. The chemical chaperones increased the UPR in the CVID patient cells in response to the stressors, suggesting that misfolded immunoglobulins were stabilized. We suggest that the AMP-dependent transcription factor alpha branch of the UPR is disturbed in CVID patients, underlying the observed expression behavior. Topics: B-Lymphocytes; Cells, Cultured; Common Variable Immunodeficiency; Dimethyl Sulfoxide; Endoplasmic Reticulum Stress; Gene Expression Profiling; Gene Expression Regulation; Gene Regulatory Networks; Humans; Immunoglobulins; Phenylbutyrates; Taurochenodeoxycholic Acid; Thapsigargin; Transcription Factors; Tunicamycin; Unfolded Protein Response | 2020 |
Regulation of the cerebrovascular smooth muscle cell phenotype by mitochondrial oxidative injury and endoplasmic reticulum stress in simulated microgravity rats via the PERK-eIF2α-ATF4-CHOP pathway.
Microgravity exposure results in vascular remodeling and cardiovascular dysfunction. Here, the effects of mitochondrial oxidative stress on vascular smooth muscle cells (VSMCs) in rat cerebral arteries under microgravity simulated by hindlimb unweighting (HU) was studied. Endoplasmic reticulum (ER)-resident transmembrane sensor proteins and phenotypic markers of rat cerebral VSMCs were examined. In HU rats, CHOP expression was increased gradually, and the upregulation of the PERK-eIF2α-ATF4 pathway was the most pronounced in cerebral arteries. Furthermore, PERK/p-PERK signaling, CHOP, GRP78 and reactive oxygen species were augmented by PERK overexpression but attenuated by the mitochondria-targeting antioxidant MitoTEMPO. Meanwhile, p-PI3K, p-Akt and p-mTOR protein levels in VSMCs were increased in HU rat cerebral arteries. Compared with the control, HU rats exhibited lower α-SMA, calponin, SM-MHC and caldesmon protein levels but higher OPN and elastin levels in cerebral VSMCs. The cerebral VSMC phenotype transition from a contractile to synthetic phenotype in HU rats was augmented by PERK overexpression and 740Y-P but reversed by MitoTEMPO and the ER stress inhibitors tauroursodeoxycholic acid (TUDCA) and 4-phenylbutyric acid (4-PBA). In summary, mitochondrial oxidative stress and ER stress induced by simulated microgravity contribute to phenotype transition of cerebral VSMCs through the PERK-eIF2a-ATF4-CHOP pathway in a rat model. Topics: Activating Transcription Factor 4; Animals; Antioxidants; Cerebral Arteries; eIF-2 Kinase; Endoplasmic Reticulum; Eukaryotic Initiation Factor-2; Gene Expression Regulation; Heat-Shock Proteins; Hindlimb Suspension; Male; Mitochondria; Muscle, Smooth, Vascular; Myocytes, Smooth Muscle; Organophosphorus Compounds; Phenylbutyrates; Phosphatidylinositol 3-Kinases; Piperidines; Proto-Oncogene Proteins c-akt; Rats; Rats, Sprague-Dawley; Signal Transduction; Taurochenodeoxycholic Acid; TOR Serine-Threonine Kinases; Transcription Factor CHOP | 2020 |
Pharmacological Chaperones Attenuate the Development of Opioid Tolerance.
Opioids are potent analgesics widely used to control acute and chronic pain, but long-term use induces tolerance that reduces their effectiveness. Opioids such as morphine bind to mu opioid receptors (MORs), and several downstream signaling pathways are capable of inducing tolerance. We previously reported that signaling from the endoplasmic reticulum (ER) contributed to the development of morphine tolerance. Accumulation of misfolded proteins in the ER induced the unfolded protein response (UPR) that causes diverse pathological conditions. We examined the effects of pharmacological chaperones that alleviate ER stress on opioid tolerance development by assessing thermal nociception in mice. Pharmacological chaperones such as tauroursodeoxycholic acid and 4-phenylbutyrate suppressed the development of morphine tolerance and restored analgesia. Chaperones alone did not cause analgesia. Although morphine administration induced analgesia when glycogen synthase kinase 3β (GSK3β) was in an inactive state due to serine 9 phosphorylation, repeated morphine administration suppressed this phosphorylation event. Co-administration of chaperones maintained the inactive state of GSK3β. These results suggest that ER stress may facilitate morphine tolerance due to intracellular crosstalk between the UPR and MOR signaling. Pharmacological chaperones may be useful in the management of opioid misuse. Topics: Analgesics, Opioid; Animals; Drug Tolerance; Endoplasmic Reticulum Stress; Glycogen Synthase Kinase 3 beta; Male; Mice; Mice, Inbred C57BL; Morphine; Nociception; Phenylbutyrates; Taurochenodeoxycholic Acid | 2020 |
Chemical chaperones improve the functional recovery of stunned myocardium by attenuating the endoplasmic reticulum stress.
Myocardial ischaemia/reperfusion (I/R) produces structural and functional alterations depending on the duration of ischaemia. Brief ischaemia followed by reperfusion causes reversible contractile dysfunction (stunned heart) but long-lasting ischaemia followed by reperfusion can result in irreversible injury with cell death. Events during I/R can alter endoplasmic reticulum (ER) function leading to the accumulation of unfolded/misfolded proteins. The resulting ER stress induces activation of several signal transduction pathways, known as unfolded protein response (UPR). Experimental evidence shows that UPR contributes to cell death in irreversible I/R injury; however, there is still uncertainty for its occurrence in the stunned myocardium. This study investigated the ER stress response and its functional impact on the post-ischaemic cardiac performance of the stunned heart.. Perfused rat hearts were subjected to 20 minutes of ischaemia followed by 30 minutes of reperfusion. UPR markers were evaluated by qRT-PCR and western blot. Post-ischaemic mechanical recovery was measured in absence and presence of two chemical chaperones: tauroursodeoxycholic acid (TUDCA) and 4-phenylbutyric acid (4-PBA).. Analysis of mRNA and protein levels of various ER stress effectors demonstrated that different UPR signalling cascades, involving both pro-survival and pro-apoptotic pathways, are activated. Inhibition of the UPR with chemical chaperones improved the post-ischaemic recovery of cardiac mechanical function without affecting the I/R-induced increase in oxidative stress.. Our results suggest that prevention of ER stress by chemical chaperones could be a therapeutic tool to limit deterioration of the contractile function in clinical settings in which the phenomenon of myocardial stunning is present. Topics: Animals; Antineoplastic Agents; Apoptosis; Cholagogues and Choleretics; Disease Models, Animal; Endoplasmic Reticulum Stress; Heat-Shock Proteins; Male; Myocardial Reperfusion Injury; Myocardial Stunning; Myocardium; Phenylbutyrates; Rats; Rats, Wistar; Signal Transduction; Taurochenodeoxycholic Acid; Unfolded Protein Response | 2020 |
Effect of 4-Phenylbutyric Acid and Tauroursodeoxycholic Acid on Magnesium and Calcium Metabolism in Streptozocin-Induced Type 1 Diabetic Mice.
Recent evidence has identified a role of micronutrients, such as magnesium (Mg Topics: Animals; Calcium; Diabetes Mellitus, Type 1; Heart; Kidney; Liver; Magnesium; Male; Mice; Myocardium; Phenylbutyrates; Spleen; Streptozocin; Taurochenodeoxycholic Acid | 2019 |
Connexin32 plays a crucial role in ROS-mediated endoplasmic reticulum stress apoptosis signaling pathway in ischemia reperfusion-induced acute kidney injury.
Ischemia-reperfusion (I/R)-induced acute kidney injury (AKI) not only prolongs the length of hospital stay, but also seriously affects the patient's survival rate. Although our previous investigation has verified that reactive oxygen species (ROS) transferred through gap junction composed of connexin32 (Cx32) contributed to AKI, its underlying mechanisms were not fully understood and viable preventive or therapeutic regimens were still lacking. Among various mechanisms involved in organs I/R-induced injuries, endoplasmic reticulum stress (ERS)-related apoptosis is currently considered to be an important participant. Thus, in present study, we focused on the underlying mechanisms of I/R-induced AKI, and postulated that Cx32 mediated ROS/ERS/apoptosis signal pathway activation played an important part in I/R-induced AKI.. We established renal I/R models with Cx32. Renal damage was progressively exacerbated in a time-dependent manner at the reperfusion stage, that was consistent with the alternation of ERS activation, including glucose regulated protein 78 (BiP/GRP78), X box-binding protein1, and C/EBP homologous protein expression. TUDCA or 4-PBA application attenuated I/R-induced ERS activation and protected against renal tubular epithelial cells apoptosis and renal damage. Cx32 deficiency decreased ROS generation and distribution between the neighboring cells, which attenuated I/R-induced ERS activation, and improved cell apoptosis and renal damage.. Cx32 mediated ROS/ERS/apoptosis signal pathway activation played an important part in I/R-induced AKI. Cx32 deficiency, ROS elimination, and ERS inhibition all could protect against I/R-induced AKI. Topics: Acetylcysteine; Acute Kidney Injury; Animals; Apoptosis; Connexins; Endoplasmic Reticulum Chaperone BiP; Endoplasmic Reticulum Stress; Epithelial Cells; Gap Junction beta-1 Protein; Gene Deletion; Gene Knockout Techniques; Kidney; Male; Mice, Inbred C57BL; Phenylbutyrates; Reactive Oxygen Species; Reperfusion Injury; Signal Transduction; Taurochenodeoxycholic Acid | 2018 |
Bone marrow mesenchymal stem cell donors with a high body mass index display elevated endoplasmic reticulum stress and are functionally impaired.
Bone marrow mesenchymal stem cells (BM-MSCs) are promising candidates for regenerative medicine purposes. The effect of obesity on the function of BM-MSCs is currently unknown. Here, we assessed how obesity affects the function of BM-MSCs and the role of endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) therein. BM-MSCs were obtained from healthy donors with a normal (<25) or high (>30) body mass index (BMI). High-BMI BM-MSCs displayed severely impaired osteogenic and diminished adipogenic differentiation, decreased proliferation rates, increased senescence, and elevated expression of ER stress-related genes ATF4 and CHOP. Suppression of ER stress using tauroursodeoxycholic acid (TUDCA) and 4-phenylbutyrate (4-PBA) resulted in partial recovery of osteogenic differentiation capacity, with a significant increase in the expression of ALPL and improvement in the UPR. These data indicate that BMI is important during the selection of BM-MSC donors for regenerative medicine purposes and that application of high-BMI BM-MSCs with TUDCA or 4-PBA may improve stem cell function. However, whether this improvement can be translated into an in vivo clinical advantage remains to be assessed. Topics: Activating Transcription Factor 4; Adipogenesis; Adolescent; Adult; Alkaline Phosphatase; Body Mass Index; Cell Differentiation; Cell Proliferation; Cellular Senescence; Child; Endoplasmic Reticulum Stress; Female; Gene Expression Regulation, Developmental; Humans; Male; Mesenchymal Stem Cell Transplantation; Mesenchymal Stem Cells; Middle Aged; Obesity; Osteogenesis; Phenylbutyrates; Regenerative Medicine; Taurochenodeoxycholic Acid; Tissue Donors; Transcription Factor CHOP; Unfolded Protein Response; Young Adult | 2018 |
Chemical chaperone, TUDCA unlike PBA, mitigates protein aggregation efficiently and resists ER and non-ER stress induced HepG2 cell death.
Stress induced BSA (bovine serum albumin) protein aggregation is effectively mitigated in vitro by TUDCA (tauroursodeoxycholic acid) than by PBA (4- phenylbutyric acid), chemical chaperones approved by FDA for the treatment of biliary cirrhosis and urea cycle disorders respectively. TUDCA, unlike PBA, enhances trypsin mediated digestion of BSA. TUDCA activates PERK, an ER-resident kinase that phosphorylates the alpha-subunit of eukaryotic initiation factor2 (eIF2α) and promotes the expression of activated transcription factor 4 (ATF4) in HepG2 cells. In contrast, PBA induced eIF2α phosphorylation is not mediated by PERK activation and results in low ATF4 expression. Neither chaperones promote expression of BiP, an ER chaperone, and CHOP (C/EBP homologous protein), downstream target of eIF2α-ATF4 pathway. Both chaperones mitigate tunicamycin induced PERK-eIF2α-ATF4-CHOP arm of UPR and expression of BiP. TUDCA, unlike PBA does not decrease cell viability and it also mitigates tunicamycin, UV-irradiation and PBA induced PARP (poly ADP-ribose polymerase) cleavage and cell death. These findings therefore suggest that TUDCA's antiapoptotic activity to protect HepG2 cells and PBA's activity that limits tumor cell progression may be important while considering their therapeutic potential. Topics: Activating Transcription Factor 4; Apoptosis; eIF-2 Kinase; Endoplasmic Reticulum Stress; Eukaryotic Initiation Factor-2; Hep G2 Cells; Humans; Molecular Chaperones; Molecular Sequence Annotation; Phenylbutyrates; Poly(ADP-ribose) Polymerases; Taurochenodeoxycholic Acid; Tunicamycin | 2017 |
Cell-autonomous cytotoxicity of type I interferon response
The interaction of IFN with specific membrane receptors that transduce death-inducing signals is considered to be the principle mechanism of IFN-induced cytotoxicity. In this study, the classic non-cell-autonomous cytotoxicity of IFN was augmented by cell-autonomous mechanisms that operated independently of the interaction of IFN with its receptors. Cells primed to produce IFN by 5-azacytidine (5-aza) underwent endoplasmic reticulum (ER) stress. The chemical chaperones tauroursodeoxycholate (TUDCA) and 4-phenylbutyrate (4-PBA), as well as the iron chelator ciclopirox (CPX), which reduces ER stress, alleviated the cytotoxicity of 5-aza. Ablation of CCAAT-enhancer-binding protein homologous protein (CHOP), the major ER stress-associated proapoptotic transcription factor, protected fibroblasts from 5-aza only when the cytotoxicity was examined cell autonomously. In a medium-transfer experiment in which the cell-autonomous effects of 5-aza was dissociated, CHOP ablation was incapable of modulating cytotoxicity; however, neutralization of IFN receptor was highly effective. Also the levels of caspase activation showed a distinct profile between the cell-autonomous and the medium-transfer experiments. We suggest that besides the classic paracrine mechanism, cell-autonomous mechanisms that involve induction of ER stress also participate. These results have implications in the development of anti-IFN-based therapies and expand the class of pathologic states that are viewed as protein-misfolding diseases.-Mihailidou, C., Papavassiliou, A. G., Kiaris, H. Cell-autonomous cytotoxicity of type I interferon response Topics: Animals; Azacitidine; Blotting, Western; Cell Death; Cell Survival; Cells, Cultured; Ciclopirox; Endoplasmic Reticulum Stress; Enzyme-Linked Immunosorbent Assay; Interferon Type I; Mice; Mice, Inbred C57BL; Phenylbutyrates; Pyridones; Taurochenodeoxycholic Acid; Unfolded Protein Response | 2017 |
PPARδ Is Required for Exercise to Attenuate Endoplasmic Reticulum Stress and Endothelial Dysfunction in Diabetic Mice.
Physical activity has profound benefits on health, especially on cardiometabolic wellness. Experiments in rodents with trained exercise have shown that exercise improves vascular function and reduces vascular inflammation by modulating the balance between nitric oxide (NO) and oxidative stress. However, the upstream regulator of exercise-induced vascular benefits is unclear. We aimed to investigate the involvement of peroxisome proliferator-activated receptor δ (PPARδ) in exercise-induced vascular functional improvement. We show that PPARδ is a crucial mediator for exercise to exert a beneficial effect on the vascular endothelium in diabetic mice. In db/db mice and high-fat diet-induced obese mice, 4 weeks of treadmill exercise restored endothelium-dependent vasodilation of aortas and flow-mediated vasodilation in mesenteric resistance arteries, whereas genetic ablation of Ppard abolished such improvements. Exercise induces AMPK activation and subsequent PPARδ activation, which help to reduce endoplasmic reticulum (ER) and oxidative stress, thus increasing NO bioavailability in endothelial cells and vascular tissues. Chemical chaperones 4-phenylbutyric acid and tauroursodeoxycholic acid decrease ER stress and protect against endothelial dysfunction in diabetic mice. The results demonstrate that PPARδ-mediated inhibition of ER stress contributes to the vascular benefits of exercise and provides potentially effective targets for treating diabetic vasculopathy. Topics: Animals; Aorta; Blood Pressure; Diabetes Mellitus; Diabetic Angiopathies; Diet, High-Fat; Endoplasmic Reticulum Stress; Endothelium, Vascular; Male; Mesenteric Arteries; Mice; Mice, Knockout; Myography; Nitric Oxide; Obesity; Organ Culture Techniques; Oxidative Stress; Phenylbutyrates; Physical Conditioning, Animal; Receptors, Cytoplasmic and Nuclear; Taurochenodeoxycholic Acid; Vasodilation | 2017 |
Interferon alpha impairs insulin production in human beta cells via endoplasmic reticulum stress.
Despite substantial advances in the research exploring the pathogenesis of Type 1 Diabetes (T1D), the pathophysiological mechanisms involved remain unknown. We hypothesized in this study that interferon alpha (IFNα) participates in the early stages of T1D development by triggering endoplasmic reticulum (ER) stress. To verify our hypothesis, human islets and human EndoC-βH1 cells were exposed to IFNα and tested for ER stress markers, glucose stimulated insulin secretion (GSIS) and insulin content. IFNα treatment induced upregulation of ER stress markers including Binding immunoglobulin Protein, phospho-eukaryotic translation initiation factor 2α, spliced- X-box binding protein-1, C/EBP homologous protein and activating transcription factor 4. Intriguingly, IFNα treatment did not impair GSIS but significantly decreased insulin production in both human islets and EndoC-βH1 cells. Furthermore, IFNα decreased the expression of both proinsulin convertase 1 and proinsulin convertase 2, suggesting an altered functional state of the beta cells characterized by a slower proinsulin-insulin conversion. Pretreatment of both human islets and EndoC-βH1 cells with chemical chaperones 4-phenylbutyric acid and tauroursodeoxycholic acid completely prevented IFNα effects, indicating an ER stress-mediated impairment of insulin production. We demonstrated for the first time that IFNα elicits ER stress in human beta cells providing a novel mechanistic role for this virus-induced cytokine in the development of T1D. Compounds targeting molecular processes altered in ER-stressed beta cells could represent a potential therapeutic strategy to prevent IFNα-induced beta cell dysfunction in the early onset of T1D. Topics: Apoptosis; Cells, Cultured; Cytokines; Diabetes Mellitus, Type 1; Endoplasmic Reticulum Stress; Humans; Insulin; Insulin-Secreting Cells; Interferon-alpha; Phenylbutyrates; Proprotein Convertase 1; Proprotein Convertase 2; Taurochenodeoxycholic Acid; Transcription Factor CHOP; X-Box Binding Protein 1 | 2017 |
Analysis of the potency of various low molecular weight chemical chaperones to prevent protein aggregation.
Newly translated proteins must undergo proper folding to ensure their function. To enter a low energy state, misfolded proteins form aggregates, which are associated with many degenerative diseases, such as Huntington's disease and chronic kidney disease (CKD). Recent studies have shown the use of low molecular weight chemical chaperones to be an effective method of reducing protein aggregation in various cell types. This study demonstrates a novel non-biased assay to assess the molecular efficacy of these compounds at preventing protein misfolding and/or aggregation. This assay utilizes a thioflavin T fluorescent stain to provide a qualitative and quantitative measure of protein misfolding within cells. The functionality of this method was first assessed in renal proximal tubule epithelial cells treated with various endoplasmic reticulum (ER) stress inducers. Once established in the renal model system, we analyzed the ability of some known chemical chaperones to reduce ER stress. A total of five different compounds were selected: 4-phenylbutyrate (4-PBA), docosahexaenoic acid (DHA), tauroursodeoxycholic acid, trehalose, and glycerol. The dose-dependent effects of these compounds at reducing thapsigargin-induced ER stress was then analyzed, and used to determine their EC Topics: Benzothiazoles; Cell Line; Docosahexaenoic Acids; Endoplasmic Reticulum Stress; Epithelial Cells; Glycerol; Humans; Kidney Tubules, Proximal; Molecular Weight; Phenylbutyrates; Protein Aggregates; Protein Aggregation, Pathological; Protein Folding; Staining and Labeling; Taurochenodeoxycholic Acid; Thapsigargin; Thiazoles; Trehalose; Unfolded Protein Response; Xenobiotics | 2017 |
Effect of Tauroursodeoxycholic Acid and 4-Phenylbutyric Acid on Metabolism of Copper and Zinc in Type 1 Diabetic Mice Model.
Alternations of copper (Cu) and zinc (Zn) status in diabetes have received a great attention. Tauroursodeoxycholic acid (TUDCA) and 4-phenylbutyric acid (PBA) could alleviate the increased endoplasmic reticulum (ER) stress and prevent insulin resistance. This study aimed to investigate the effect of TUDCA and PBA on metabolism of Cu and Zn in diabetic mice model. Diabetes was induced by streptozotocin in FVB mice treated with and without TUDCA and PBA. Determination of Cu and Zn in tissues and serum by acid digestion was followed by ICP-MS. The renal and serum Cu levels were significantly higher, while the hepatic Cu and Zn levels were significantly decreased in the diabetic mice at 2 weeks and 2 months after diabetes onset. The increase of cardiac Cu together with the decrease of muscular Zn was found in the diabetic mice only at 2 months. Cu levels were positively correlated with Zn in the heart, liver, kidney, muscle, spleen, and serum of diabetic and control mice at both 2 weeks and 2 months. Both PBA and TUDCA reduced serum Zn, and PBA reduced hepatic Cu to normal levels in the diabetic mice at two time points, while PBA normalized serum Cu in the diabetic mice only at 2 months. PBA increased hepatic Zn to normal levels in the diabetic mice at 2 weeks, while it partially increased hepatic Zn in the same group at 2 months. Therefore, maintaining homeostasis of Cu and Zn by TUDCA and PBA in diabetes needs to be received with special attention. Topics: Animals; Copper; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 1; Liver; Mice; Phenylbutyrates; Taurochenodeoxycholic Acid; Zinc | 2016 |
Activation of autophagy by unfolded proteins during endoplasmic reticulum stress.
Endoplasmic reticulum stress is defined as the accumulation of unfolded proteins in the endoplasmic reticulum, and is caused by conditions such as heat or agents that cause endoplasmic reticulum stress, including tunicamycin and dithiothreitol. Autophagy, a major pathway for degradation of macromolecules in the vacuole, is activated by these stress agents in a manner dependent on inositol-requiring enzyme 1b (IRE1b), and delivers endoplasmic reticulum fragments to the vacuole for degradation. In this study, we examined the mechanism for activation of autophagy during endoplasmic reticulum stress in Arabidopsis thaliana. The chemical chaperones sodium 4-phenylbutyrate and tauroursodeoxycholic acid were found to reduce tunicamycin- or dithiothreitol-induced autophagy, but not autophagy caused by unrelated stresses. Similarly, over-expression of BINDING IMMUNOGLOBULIN PROTEIN (BIP), encoding a heat shock protein 70 (HSP70) molecular chaperone, reduced autophagy. Autophagy activated by heat stress was also found to be partially dependent on IRE1b and to be inhibited by sodium 4-phenylbutyrate, suggesting that heat-induced autophagy is due to accumulation of unfolded proteins in the endoplasmic reticulum. Expression in Arabidopsis of the misfolded protein mimics zeolin or a mutated form of carboxypeptidase Y (CPY*) also induced autophagy in an IRE1b-dependent manner. Moreover, zeolin and CPY* partially co-localized with the autophagic body marker GFP-ATG8e, indicating delivery to the vacuole by autophagy. We conclude that accumulation of unfolded proteins in the endoplasmic reticulum is a trigger for autophagy under conditions that cause endoplasmic reticulum stress. Topics: Arabidopsis; Autophagy; Dithiothreitol; Endoplasmic Reticulum; Endoplasmic Reticulum Stress; Phenylbutyrates; Protein Unfolding; Taurochenodeoxycholic Acid; Tunicamycin; Vacuoles | 2016 |
Placental endoplasmic reticulum stress in gestational diabetes: the potential for therapeutic intervention with chemical chaperones and antioxidants.
The aim of this work was to determine whether placental endoplasmic reticulum (ER) stress may contribute to the pathophysiology of gestational diabetes mellitus (GDM) and to test the efficacy of chemical chaperones and antioxidant vitamins in ameliorating that stress in a trophoblast-like cell line in vitro.. Placental samples were obtained from women suffering from GDM and from normoglycaemic controls and were frozen immediately. Women with GDM had 2 h serum glucose levels > 9.0 mmol/l following a 75 g oral glucose tolerance test and were treated with diet and insulin when necessary. Western blotting was used to assess markers of ER stress. To test the effects of hyperglycaemia on the generation of ER stress, a new trophoblast-like cell line, BeWo-NG, was generated by culturing in a physiological glucose concentration of 5.5 mmol/l (over 20 passages) before challenging with 10 or 20 mmol/l glucose.. All GDM patients were well-controlled (HbA1c 5.86 ± 0.55% or 40.64 ± 5.85 mmol/mol, n = 11). Low-grade ER stress was observed in the placental samples, with dilation of ER cisternae and increased phosphorylation of eukaryotic initiation factor 2 subunit α. Challenge of BeWo-NG with high glucose activated the same pathways, but this was as a result of acidosis of the culture medium rather than the glucose concentration per se. Addition of chemical chaperones 4-phenylbutyrate and tauroursodeoxycholic acid and vitamins C and E ameliorated the ER stress.. This is the first report of placental ER stress in GDM patients. Chemical chaperones and antioxidant vitamins represent potential therapeutic interventions for GDM. Topics: Acidosis; Adult; Antioxidants; Ascorbic Acid; Blood Glucose; Blotting, Western; Cell Line; Diabetes, Gestational; Endoplasmic Reticulum Stress; Eukaryotic Initiation Factor-2; Female; Glucose; Humans; Phenylbutyrates; Phosphorylation; Placenta; Pregnancy; Taurochenodeoxycholic Acid; Unfolded Protein Response; Vitamin E | 2016 |
Critical Role of Endoplasmic Reticulum Stress in Chronic Intermittent Hypoxia-Induced Deficits in Synaptic Plasticity and Long-Term Memory.
This study examined the role of endoplasmic reticulum (ER) stress in mediating chronic intermittent hypoxia (IH)-induced neurocognitive deficits. We designed experiments to demonstrate that ER stress is initiated in the hippocampus under chronic IH and determined its role in apoptotic cell death, impaired synaptic structure and plasticity, and memory deficits.. Two weeks of IH disrupted ER fine structure and upregulated ER stress markers, glucose-regulated protein 78, caspase-12, and C/EBP homologous protein, in the hippocampus, which could be suppressed by ER stress inhibitors, tauroursodeoxycholic acid (TUDCA) and 4-phenylbutyric acid. Meanwhile, ER stress induced apoptosis via decreased Bcl-2, promoted reactive oxygen species production, and increased malondialdehyde formation and protein carbonyl, as well as suppressed mitochondrial function. These effects were largely prevented by ER stress inhibitors. On the other hand, suppression of oxidative stress could reduce ER stress. In addition, the length of the synaptic active zone and number of mature spines were reduced by IH. Long-term recognition memory and spatial memory were also impaired, which was accompanied by reduced long-term potentiation in the Schaffer collateral pathway. These effects were prevented by coadministration of the TUDCA.. These results show that ER stress plays a critical role in underlying memory deficits in obstructive sleep apnea (OSA)-associated IH. Attenuators of ER stress may serve as novel adjunct therapeutic agents for ameliorating OSA-induced neurocognitive impairment. Topics: Animals; Caspase 3; Endoplasmic Reticulum Stress; Hippocampus; Hypoxia; Male; Memory; Memory, Long-Term; Mice, Inbred C57BL; Mitochondria; Neuronal Plasticity; Neurons; Phenylbutyrates; Proto-Oncogene Proteins c-bcl-2; Reactive Oxygen Species; Spine; Taurochenodeoxycholic Acid | 2015 |
Reduction of endoplasmic reticulum stress attenuates the defects caused by Drosophila mitofusin depletion.
Ablation of the mitochondrial fusion and endoplasmic reticulum (ER)-tethering protein Mfn2 causes ER stress, but whether this is just an epiphenomenon of mitochondrial dysfunction or a contributor to the phenotypes in mitofusin (Mfn)-depleted Drosophila melanogaster is unclear. In this paper, we show that reduction of ER dysfunction ameliorates the functional and developmental defects of flies lacking the single Mfn mitochondrial assembly regulatory factor (Marf). Ubiquitous or neuron- and muscle-specific Marf ablation was lethal, altering mitochondrial and ER morphology and triggering ER stress that was conversely absent in flies lacking the fusion protein optic atrophy 1. Expression of Mfn2 and ER stress reduction in flies lacking Marf corrected ER shape, attenuating the developmental and motor defects. Thus, ER stress is a targetable pathogenetic component of the phenotypes caused by Drosophila Mfn ablation. Topics: Animals; Drosophila melanogaster; Drosophila Proteins; Endoplasmic Reticulum Stress; Genetic Complementation Test; Humans; Locomotion; Membrane Proteins; Mice; Mitochondria; Phenylbutyrates; RNA Interference; Taurochenodeoxycholic Acid | 2014 |
Chemical chaperones reduce ionizing radiation-induced endoplasmic reticulum stress and cell death in IEC-6 cells.
Radiotherapy, which is one of the most effective approaches to the treatment of various cancers, plays an important role in malignant cell eradication in the pelvic area and abdomen. However, it also generates some degree of intestinal injury. Apoptosis in the intestinal epithelium is the primary pathological factor that initiates radiation-induced intestinal injury, but the mechanism by which ionizing radiation (IR) induces apoptosis in the intestinal epithelium is not clearly understood. Recently, IR has been shown to induce endoplasmic reticulum (ER) stress, thereby activating the unfolded protein response (UPR) signaling pathway in intestinal epithelial cells. However, the consequences of the IR-induced activation of the UPR signaling pathway on radiosensitivity in intestinal epithelial cells remain to be determined. In this study, we investigated the role of ER stress responses in IR-induced intestinal epithelial cell death. We show that chemical ER stress inducers, such as tunicamycin or thapsigargin, enhanced IR-induced caspase 3 activation and DNA fragmentation in intestinal epithelial cells. Knockdown of Xbp1 or Atf6 with small interfering RNA inhibited IR-induced caspase 3 activation. Treatment with chemical chaperones prevented ER stress and subsequent apoptosis in IR-exposed intestinal epithelial cells. Our results suggest a pro-apoptotic role of ER stress in IR-exposed intestinal epithelial cells. Furthermore, inhibiting ER stress may be an effective strategy to prevent IR-induced intestinal injury. Topics: Animals; Apoptosis; Caspase 3; Cell Death; Cell Line; Endoplasmic Reticulum Stress; Enzyme Activation; Epithelial Cells; Intestinal Mucosa; Phenylbutyrates; Rats; Taurochenodeoxycholic Acid; Thapsigargin; Tunicamycin; Unfolded Protein Response | 2014 |
Endoplasmic reticulum stress is increased after spontaneous labor in human fetal membranes and myometrium where it regulates the expression of prolabor mediators.
Increasing evidence indicates that endoplasmic reticulum (ER) stress is involved in various diseases. In nongestational tissues, several markers of the unfolded protein response (UPR) have been shown to regulate the inflammatory response. Thus, the aim of this study was to determine the effect of human labor on markers of ER stress in fetal membranes and myometrium. In addition, the effect of ER stress inhibition on the expression and secretion of proinflammatory and prolabor mediators was also assessed. The markers of ER stress, GRP78, IRE1, and spliced XBP1 (XBP1s), were significantly increased in fetal membranes and myometrium after term and preterm labor compared to nonlaboring samples. Given that inflammation is considered to be one of the leading causes of spontaneous preterm birth, here we used bacterial endotoxin lipopolysaccharide (LPS) as a model for infection-induced preterm birth. In term nonlabored fetal membranes and myometrium, LPS induced UPR activation as evidenced by a significant increase in the expression of GRP78, IRE1, and XBP1s in fetal membranes and myometrium. The use of the chemical chaperones 4-phenylbutyric acid (4-PBA) and tauroursodeoxycholic acid (TUDCA) alleviated ER stress induced by LPS. 4-PBA and TUDCA also ameliorated the increase in LPS-induced prolabor mediators. Our data suggest that the UPR may regulate the inflammatory responses associated with labor or infection in fetal membranes and myometrium of pregnant term and preterm women. Thus, the use of ER stress inhibitors, in particular 4-PBA or TUDCA, may be a potential therapeutic strategy for the prevention of infection-mediated spontaneous preterm birth. Topics: Adult; Alternative Splicing; Biomarkers; Cesarean Section; DNA-Binding Proteins; Endoplasmic Reticulum Chaperone BiP; Endoplasmic Reticulum Stress; Endoribonucleases; Extraembryonic Membranes; Female; Gene Expression Regulation, Developmental; Heat-Shock Proteins; Humans; Labor, Obstetric; Myometrium; Obstetric Labor, Premature; Phenylbutyrates; Pregnancy; Protein Serine-Threonine Kinases; Regulatory Factor X Transcription Factors; Taurochenodeoxycholic Acid; Tissue Culture Techniques; Tocolytic Agents; Transcription Factors; Unfolded Protein Response; Up-Regulation; X-Box Binding Protein 1 | 2014 |
Reduction of endoplasmic reticulum stress inhibits neointima formation after vascular injury.
Endoplasmic reticulum (ER) stress and inappropriate adaptation through the unfolded protein response (UPR) are predominant features of pathological processes. However, little is known about the link between ER stress and endovascular injury. We investigated the involvement of ER stress in neointima hyperplasia after vascular injury. The femoral arteries of 7-8-week-old male mice were subjected to wire-induced vascular injury. After 4 weeks, immunohistological analysis showed that ER stress markers were upregulated in the hyperplastic neointima. Neointima formation was increased by 54.8% in X-box binding protein-1 (XBP1) heterozygous mice, a model of compromised UPR. Knockdown of Xbp1 in human coronary artery smooth muscle cells (CASMC) in vitro promoted cell proliferation and migration. Furthermore, treatment with ER stress reducers, 4-phenylbutyrate (4-PBA) and tauroursodeoxycholic acid (TUDCA), decreased the intima-to-media ratio after wire injury by 50.0% and 72.8%, respectively. Chronic stimulation of CASMC with PDGF-BB activated the UPR, and treatment with 4-PBA and TUDCA significantly suppressed the PDGF-BB-induced ER stress markers in CASMC and the proliferation and migration of CASMC. In conclusion, increased ER stress contributes to neointima formation after vascular injury, while UPR signaling downstream of XBP1 plays a suppressive role. Suppression of ER stress would be a novel strategy against post-angioplasty vascular restenosis. Topics: Animals; Becaplermin; Cell Movement; Cell Proliferation; Cells, Cultured; Coronary Vessels; DNA-Binding Proteins; Endoplasmic Reticulum Stress; Endothelial Cells; Femoral Artery; Gene Expression Regulation; Heterozygote; Humans; Hyperplasia; Male; Mice; Myocytes, Smooth Muscle; Neointima; Phenylbutyrates; Proto-Oncogene Proteins c-sis; Regulatory Factor X Transcription Factors; Signal Transduction; Taurochenodeoxycholic Acid; Transcription Factors; Unfolded Protein Response; Vascular System Injuries; X-Box Binding Protein 1 | 2014 |
Tauroursodeoxycholic acid and 4-phenyl butyric acid alleviate endoplasmic reticulum stress and improve prognosis of donation after cardiac death liver transplantation in rats.
Inevitable warm ischemia time before organ procurement aggravates posttransplantation ischemia-reperfusion injury. Endoplasmic reticulum (ER) stress is involved in ischemia-reperfusion injury, but its role in donation after cardiac death (DCD) liver transplantation is not clear and the effect of ER stress inhibitors, tauroursodeoxycholic acid (TUDCA) and 4-phenyl butyric acid (PBA), on the prognosis of recipient of DCD liver transplantation remains unclear.. Male Sprague-Dawley rats (8-10 weeks) were randomly divided into the control group: liver grafts without warm ischemia were implanted; DCD group: warm ischemia time of the liver grafts was 60 minutes; TUDCA and PBA groups: based on the DCD group, donors were intraperitoneally injected with TUDCA or PBA 30 minutes before the organ procurements. Serum aminotransferase levels, oxidative stress activation and expression of ER stress signal molecules were evaluated. Pathological examinations were performed. The survivals of the recipients in each group were compared for 14 days.. Compared with the control group, DCD rats had significantly higher levels of serum aminotransferase at 6 hours, 1 day and 3 days after operation (P<0.01, 0.01 and 0.05, respectively) and oxidative indices (P<0.01 for both malondialdehyde and 8-hydroxy deoxyguanosine), more severe liver damage (P<0.01) and up-regulated ER stress signal expressions (P<0.01 for GRP78, phos-eIF2alpha1, CHOP, ATF-4, ATF-6, PERK, XBP-1 and pro-caspase-12). All recipients died within 3 days after liver transplantation. Administration of TUDCA or PBA significantly decreased aminotransferase levels (P<0.05), increased superoxide dismutase activities (P<0.01), alleviated liver damage (P<0.01), down-regulated ER stress signal expressions (P<0.01) and improved postoperative survivals (P<0.01).. ER stress was involved with DCD liver transplantation in rats. Preoperative intraperitoneally injection of TUDCA or PBA protected ER stress and improved prognosis. Topics: Alanine Transaminase; Animals; Aspartate Aminotransferases; Cholagogues and Choleretics; Death; Delayed Graft Function; Endoplasmic Reticulum Stress; Liver Transplantation; Male; Models, Animal; Oxidative Stress; Phenylbutyrates; Prognosis; Rats, Sprague-Dawley; Reperfusion Injury; Survival Rate; Taurochenodeoxycholic Acid | 2014 |
Suppression of endoplasmic reticulum stress improves endothelium-dependent contractile responses in aorta of the spontaneously hypertensive rat.
A contributing factor to increased peripheral resistance seen during hypertension is an increased production of endothelium-derived contractile factors (EDCFs). The main EDCFs are vasoconstrictor prostanoids, metabolites of arachidonic acid (AA) produced by Ca(2+)-dependent cytosolic phospholipase A2 (cPLA2) following phosphorylation (at Ser(505)) mediated by extracellular signal-regulated kinase (ERK1/2) and cyclooxygenase (COX) activations. Although endoplasmic reticulum (ER) stress has been shown to contribute to pathophysiological alterations in cardiovascular diseases, the relationship between ER stress and EDCF-mediated responses remains unclear. We tested the hypothesis that ER stress plays a role in EDCF-mediated responses via activation of the cPLA2/COX pathway in the aorta of the spontaneously hypertensive rat (SHR). Male SHR and Wistar-Kyoto rats (WKY) were treated with ER stress inhibitor, tauroursodeoxycholic acid or 4-phenlybutyric acid (TUDCA or PBA, respectively, 100 mg·kg(-1)·day(-1) ip) or PBS (control, 300 μl/day ip) for 1 wk. There was a decrease in systolic blood pressure in SHR treated with TUDCA or PBA compared with control SHR (176 ± 3 or 181 ± 5, respectively vs. 200 ± 2 mmHg). In the SHR, treatment with TUDCA or PBA normalized aortic (vs. control SHR) 1) contractions to acetylcholine (ACh), AA, and tert-butyl hydroperoxide, 2) ACh-stimulated releases of prostanoids (thromboxane A2, PGF2α, and prostacyclin), 3) expression of COX-1, 4) phosphorylation of cPLA2 and ERK1/2, and 5) production of H2O2. Our findings demonstrate a novel interplay between ER stress and EDCF-mediated responses in the aorta of the SHR. Moreover, ER stress inhibition normalizes such responses by suppressing the cPLA2/COX pathway. Topics: Acetylcholine; Animals; Antihypertensive Agents; Aorta; Arachidonic Acid; bcl-2-Associated X Protein; Blood Pressure; Cells, Cultured; Cyclooxygenase 1; Dinoprost; Disease Models, Animal; Dose-Response Relationship, Drug; Endoplasmic Reticulum Stress; Endothelium, Vascular; Epoprostenol; Hydrogen Peroxide; Hypertension; Male; Membrane Proteins; Mitogen-Activated Protein Kinase 1; Mitogen-Activated Protein Kinase 3; Muscle, Smooth, Vascular; Myocytes, Smooth Muscle; Phenylbutyrates; Phospholipases A2, Cytosolic; Phosphorylation; Rats; Rats, Inbred SHR; Rats, Inbred WKY; Signal Transduction; Taurochenodeoxycholic Acid; tert-Butylhydroperoxide; Thromboxane A2; Vasoconstriction; Vasoconstrictor Agents; Vasodilator Agents | 2013 |
The ER luminal binding protein (BiP) alleviates Cd(2+)-induced programmed cell death through endoplasmic reticulum stress-cell death signaling pathway in tobacco cells.
Cadmium (Cd) is very toxic to plant cells and Cd(2+) stress induces programmed cell death (PCD) in Nicotiana tabacum L. cv. bright yellow-2 (BY-2) cells. In plants, PCD can be regulated through the endoplasmic reticulum (ER) stress-cell death signaling pathway. However, the mechanism of Cd(2+)-induced PCD remains unclear. In this study, we found that Cd(2+) treatment induced ER stress in tobacco BY-2 cells. The expression of two ER stress markers NtBLP4 and NtPDI and an unfolded protein response related transcription factor NtbZIP60 were upregulated with Cd(2+) stress. Meanwhile, the PCD triggered by prolonged Cd(2+) stress could be relieved by two ER chemical chaperones, 4-phenylbutyric acid and tauroursodeoxycholic acid. These results demonstrate that the ER stress-cell death signaling pathway participates in the mediation of Cd(2+)-induced PCD. Furthermore, the ER chaperone AtBiP2 protein alleviated Cd(2+)-induced ER stress and PCD in BY-2 cells based on the fact that heterologous expression of AtBiP2 in tobacco BY-2 cells reduced the expression of NtBLP4 and a PCD-related gene NtHsr203J under Cd(2+) stress conditions. In summary, these results suggest that the ER stress-cell death signaling pathway regulates Cd(2+)-induced PCD in tobacco BY-2 cells, and that the AtBiP2 protein act as a negative regulator in this process. Topics: Apoptosis; Arabidopsis; Cadmium; Carrier Proteins; Endoplasmic Reticulum Stress; Nicotiana; Phenylbutyrates; Plant Cells; Plant Proteins; Plants, Genetically Modified; Signal Transduction; Taurochenodeoxycholic Acid | 2013 |
Endoplasmic reticulum stress participates in aortic valve calcification in hypercholesterolemic animals.
Aortic valve (AV) calcification occurs via a pathophysiological process that includes lipoprotein deposition, inflammation, and osteoblastic differentiation of valvular interstitial cells. Here, we investigated the association between endoplasmic reticulum (ER) stress and AV calcification.. We identified ER stress activation in AV of patients with calcified AV stenosis. We generated an AV calcification model in hypercholesterolemic rabbits and mice, respectively, and found marked AV ER stress induction. Classical ER stress inhibitor, tauroursodeoxycholic acid, administration markedly prevented AV calcification, and attenuated AV osteoblastic differentiation and inflammation in both rabbit and mouse models of AV calcification via inhibition of ER stress. In cultured valvular interstitial cells (VICs), we found that oxidized low density lipoprotein (oxLDL) caused ER stress in a cytosolic [Ca](2+)i-dependent manner. OxLDL promoted osteoblastic differentiation via ER stress-mediated protein kinase-like ER kinase/activating transcription factor 4/osteocalcin and inositol-requiring transmembrane kinase and endonuclease-1α (IRE1α)/spliced X-box-binding protein 1/Runx2 pathway, and induced inflammatory responses through IRE1α/c-Jun N-terminal kinase and IRE1α/nuclear factor kappa-light-chain-enhancer of activated B cells signaling in VICs. Inhibition of ER stress by either tauroursodeoxycholic acid or 4-phenyl butyric acid could both suppress oxLDL-induced osteoblastic differentiation and inflammatory responses in VICs.. These data provide novel evidence that ER stress participates in AV calcification development, and suggest that ER stress may be a novel target for AV calcification prevention and treatment. Topics: Aged; Animals; Aortic Valve; Aortic Valve Stenosis; Apolipoproteins E; Calcinosis; Calcium; Cell Differentiation; Cells, Cultured; Disease Models, Animal; Endoplasmic Reticulum; Endoplasmic Reticulum Stress; Female; Humans; Hypercholesterolemia; Inflammation; Inflammation Mediators; Intracellular Signaling Peptides and Proteins; Lipoproteins, LDL; Male; Mice; Mice, Knockout; Middle Aged; Osteoblasts; Phenylbutyrates; Rabbits; RNA Interference; Signal Transduction; Swine; Taurochenodeoxycholic Acid; Transfection | 2013 |
4-Phenylbutyric acid reduces endoplasmic reticulum stress, trypsin activation, and acinar cell apoptosis while increasing secretion in rat pancreatic acini.
Endoplasmic reticulum (ER) stress leads to misfolded proteins inside the ER and initiates unfolded protein response (UPR). Unfolded protein response components are involved in pancreatic function and activated during pancreatitis. However, the exact role of ER stress in the exocrine pancreas is unclear. The present study examined the effects of 4-phenylbutyric acid (4-PBA), an ER chaperone, on acini and UPR components.. Rat acini were stimulated with cholecystokinin (10 pmol/L to 10 nmol/L) with or without preincubation of 4-PBA. The UPR components were analyzed, including chaperone-binding protein, protein kinaselike ER kinase, X-box-binding protein 1, c-Jun NH(2)-terminal kinase, CCAAT/enhancer-binding protein homologous protein, caspase 3, and apoptosis. Effects of 4-PBA were measured on secretion, calcium, and trypsin activation.. 4-Phenylbutyric acid led to an increase of secretion, whereas trypsin activation with supraphysiological cholecystokinin was significantly reduced. 4-Phenylbutyric acid prevented chaperone-binding protein up-regulation, diminished protein kinaselike ER kinase, and c-Jun NH2-terminal kinase phosphorylation, prohibited X-box-binding protein 1 splicing and CCAAT/enhancer-binding protein homologous protein expression, caspase 3 activation, and apoptosis caused by supraphysiological cholecystokinin.. By incubation with 4-PBA, beneficial in urea cycle deficiency, it was possible to enhance enzyme secretion to suppress trypsin activation, UPR activation, and proapoptotic pathways. The data hint new perspectives for the use of chemical chaperones in pancreatic diseases. Topics: Amylases; Animals; Apoptosis; Calcium; Cholecystokinin; Dose-Response Relationship, Drug; Endoplasmic Reticulum Stress; Enzyme Activation; Intracellular Signaling Peptides and Proteins; Male; Pancreas, Exocrine; Phenylbutyrates; Rats; Rats, Wistar; Signal Transduction; Taurochenodeoxycholic Acid; Time Factors; Trypsin; Unfolded Protein Response | 2013 |
Attenuating endoplasmic reticulum stress as a novel therapeutic strategy in pulmonary hypertension.
Evidence suggestive of endoplasmic reticulum (ER) stress in the pulmonary arteries of patients with pulmonary arterial hypertension has been described for decades but has never been therapeutically targeted. ER stress is a feature of many conditions associated with pulmonary arterial hypertension like hypoxia, inflammation, or loss-of-function mutations. ER stress signaling in the pulmonary circulation involves the activation of activating transcription factor 6, which, via induction of the reticulin protein Nogo, can lead to the disruption of the functional ER-mitochondria unit and the increasingly recognized cancer-like metabolic shift in pulmonary arterial hypertension that promotes proliferation and apoptosis resistance in the pulmonary artery wall. We hypothesized that chemical chaperones known to suppress ER stress signaling, like 4-phenylbutyrate (PBA) or tauroursodeoxycholic acid, will inhibit the disruption of the ER-mitochondrial unit and prevent/reverse pulmonary arterial hypertension.. PBA in the drinking water both prevented and reversed chronic hypoxia-induced pulmonary hypertension in mice, decreasing pulmonary vascular resistance, pulmonary artery remodeling, and right ventricular hypertrophy and improving functional capacity without affecting systemic hemodynamics. These results were replicated in the monocrotaline rat model. PBA and tauroursodeoxycholic acid improved ER stress indexes in vivo and in vitro, decreased activating transcription factor 6 activation (cleavage, nuclear localization, luciferase, and downstream target expression), and inhibited the hypoxia-induced decrease in mitochondrial calcium and mitochondrial function. In addition, these chemical chaperones suppressed proliferation and induced apoptosis in pulmonary artery smooth muscle cells in vitro and in vivo.. Attenuating ER stress with clinically used chemical chaperones may be a novel therapeutic strategy in pulmonary hypertension with high translational potential. Topics: Activating Transcription Factor 6; Animals; Antineoplastic Agents; Apoptosis; Cell Proliferation; Cholagogues and Choleretics; Chronic Disease; Disease Models, Animal; Endoplasmic Reticulum Stress; Hypertension, Pulmonary; Hypoxia; Male; Mice; Mice, Inbred C57BL; Mitochondria; Models, Cardiovascular; Phenylbutyrates; Pulmonary Circulation; Rats; Rats, Sprague-Dawley; Signal Transduction; Taurochenodeoxycholic Acid | 2013 |
Aberrant endoplasmic reticulum stress in vascular smooth muscle increases vascular contractility and blood pressure in mice deficient of AMP-activated protein kinase-α2 in vivo.
The endoplasmic reticulum (ER) plays a critical role in ensuring proper folding of newly synthesized proteins. Aberrant ER stress is reported to play a causal role in cardiovascular diseases. However, the effects of ER stress on vascular smooth muscle contractility and blood pressure remain unknown. The aim of this study was to investigate whether aberrant ER stress causes abnormal vasoconstriction and consequent high blood pressure in mice.. ER stress markers, vascular smooth muscle contractility, and blood pressure were monitored in mice. Incubation of isolated aortic rings with tunicamycin or MG132, 2 structurally unrelated ER stress inducers, significantly increased both phenylephrine-induced vasoconstriction and the phosphorylation of myosin light chain (Thr18/Ser19), both of which were abrogated by pretreatment with chemical chaperones or 5-Aminoimidazole-4-carboxamide ribonucleotide and metformin, 2 potent activators for the AMP-activated protein kinase. Consistently, administration of tauroursodeoxycholic acid or 4-phenyl butyric acid, 2 structurally unrelated chemical chaperones, in AMP-activated protein kinase-α2 knockout mice lowered blood pressure and abolished abnormal vasoconstrictor response of AMP-activated protein kinase-α2 knockout mice to phenylephrine. Consistently, tunicamycin (0.01 μg/g per day) infusion markedly increased both systolic and diastolic blood pressure, both of which were ablated by coadministration of 4-phenyl butyric acid. Furthermore, 4-phenyl butyric acid or tauroursodeoxycholic acid, which suppressed angiotensin II infusion-induced ER stress markers in vivo, markedly lowered blood pressure in angiotensin II-infused mice in vivo.. We conclude that ER stress increases vascular smooth muscle contractility resulting in high blood pressure, and AMP-activated protein kinase activation mitigates high blood pressure through the suppression of ER stress in vivo. Topics: Aminoimidazole Carboxamide; AMP-Activated Protein Kinases; Angiotensin II; Animals; Antihypertensive Agents; Blood Pressure; Cells, Cultured; Disease Models, Animal; Dose-Response Relationship, Drug; Endoplasmic Reticulum Stress; Enzyme Activation; Enzyme Activators; Humans; Hypertension; Leupeptins; Mice; Mice, Knockout; Muscle, Smooth, Vascular; Myosin Light Chains; Nitric Oxide Synthase Type III; Phenylbutyrates; Phenylephrine; Phosphorylation; Ribonucleotides; Taurochenodeoxycholic Acid; Time Factors; Tunicamycin; Vasoconstriction; Vasoconstrictor Agents | 2013 |
Glucose-induced beta cell dysfunction in vivo in rats: link between oxidative stress and endoplasmic reticulum stress.
Endoplasmic reticulum (ER) stress has been implicated in glucose-induced beta cell dysfunction. However, its causal role has not been established in vivo. Our objective was to determine the causal role of ER stress and its link to oxidative stress in glucose-induced beta cell dysfunction in vivo.. Healthy Wistar rats were infused i.v. with glucose for 48 h to achieve 20 mmol/l hyperglycaemia with or without the co-infusion of the superoxide dismutase mimetic tempol (TPO), or the chemical chaperones 4-phenylbutyrate (PBA) or tauroursodeoxycholic acid (TUDCA). This was followed by assessment of beta cell function and measurement of ER stress markers and superoxide in islets.. Glucose infusion for 48 h increased mitochondrial superoxide and ER stress markers and impaired beta cell function. Co-infusion of TPO, which we previously found to reduce mitochondrial superoxide and prevent glucose-induced beta cell dysfunction, reduced ER stress markers. Similar to findings with TPO, co-infusion of PBA, which decreases mitochondrial superoxide, prevented glucose-induced beta cell dysfunction in isolated islets. TUDCA was also effective. Also similar to findings with TPO, PBA prevented beta cell dysfunction during hyperglycaemic clamps in vivo and after hyperglycaemia (15 mmol/l) for 96 h.. Here, we causally implicate ER stress in hyperglycaemia-induced beta cell dysfunction in vivo. We show that: (1) there is a positive feedback cycle between oxidative stress and ER stress in glucose-induced beta cell dysfunction, which involves mitochondrial superoxide; and (2) this cycle can be interrupted by superoxide dismutase mimetics as well as chemical chaperones, which are of potential interest to preserve beta cell function in type 2 diabetes. Topics: Animals; Antioxidants; Cyclic N-Oxides; Endoplasmic Reticulum Stress; Female; Glucose; Hyperglycemia; Insulin-Secreting Cells; Mitochondria; Oxidative Stress; Phenylbutyrates; Rats; Rats, Wistar; Spin Labels; Superoxides; Taurochenodeoxycholic Acid | 2012 |
Reducing endoplasmic reticulum stress does not improve steatohepatitis in mice fed a methionine- and choline-deficient diet.
Endoplasmic reticulum (ER) stress has been implicated in the pathogenesis of nonalcoholic steatohepatitis. The ER stress response is activated in the livers of mice fed a methionine- and choline-deficient (MCD) diet, yet the role of ER stress in the pathogenesis of MCD diet-induced steatohepatitis is unknown. Using chemical chaperones on hepatic steatosis and markers of inflammation and fibrosis in mice fed a MCD diet, we aim to determine the effects of reducing ER stress. C57BL/6J mice were fed a MCD diet with or without the ER chemical chaperones 4-phenylbutyric acid (PBA) and tauroursodeoxycholic acid (TUDCA) for 2 wk. TUDCA and PBA effectively attenuated the ER stress response in MCD diet-fed mice, as evidenced by reduced protein levels of phosphorylated eukaryotic initiation factor 2α and phosphorylated JNK and suppression of mRNA levels of CCAAT/enhancer binding protein homologous protein, glucose-regulated protein 78 kDa, and X-box binding protein 1. However, PBA and TUDCA did not decrease MCD diet-induced hepatic steatosis. MCD diet-induced hepatic inflammation, as evidenced by increased plasma alanine aminotransferase and induction of hepatic TNFα expression, was also not reduced by PBA or TUDCA. PBA and TUDCA did not attenuate MCD diet-induced upregulation of the fibrosis-associated genes tissue inhibitor of metalloproteinase-1 and matrix metalloproteinase-9. ER chemical chaperones reduce MCD diet-induced ER stress, yet they do not improve MCD diet-induced hepatic steatosis, inflammation, or activation of genes associated with fibrosis. These data suggest that although the ER stress response is activated by the MCD diet, it does not have a primary role in the pathogenesis of MCD diet-induced steatohepatitis. Topics: Animals; Blood Glucose; Blotting, Western; Body Weight; Cholesterol; Choline Deficiency; Diet; Endoplasmic Reticulum; Fatty Liver; Gene Expression; Inflammation; Liver; Liver Cirrhosis; Male; Methionine; Mice; Mice, Inbred C57BL; Molecular Chaperones; Phenylbutyrates; Real-Time Polymerase Chain Reaction; Stress, Physiological; Taurochenodeoxycholic Acid | 2012 |
The chemical chaperones tauroursodeoxycholic and 4-phenylbutyric acid accelerate thyroid hormone activation and energy expenditure.
Exposure of cell lines endogenously expressing the thyroid hormone activating enzyme type 2 deiodinase (D2) to the chemical chaperones tauroursodeoxycholic acid (TUDCA) or 4-phenylbutiric acid (4-PBA) increases D2 expression, activity and T3 production. In brown adipocytes, TUDCA or 4-PBA induced T3-dependent genes and oxygen consumption (∼2-fold), an effect partially lost in D2 knockout cells. In wild type, but not in D2 knockout mice, administration of TUDCA lowered the respiratory quotient, doubled brown adipose tissue D2 activity and normalized the glucose intolerance associated with high fat feeding. Thus, D2 plays a critical role in the metabolic effects of chemical chaperones. Topics: Adipocytes, Brown; Animals; Cell Line; Cells, Cultured; Dietary Fats; Energy Metabolism; Gene Expression Regulation; Gene Knockout Techniques; Glucose Intolerance; Humans; Iodide Peroxidase; Iodothyronine Deiodinase Type II; Lipid Metabolism; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Oxygen Consumption; Phenylbutyrates; RNA, Messenger; Taurochenodeoxycholic Acid; Triiodothyronine | 2011 |
Endoplasmic reticulum stress inhibition protects steatotic and non-steatotic livers in partial hepatectomy under ischemia-reperfusion.
During partial hepatectomy, ischemia-reperfusion (I/R) is commonly applied in clinical practice to reduce blood flow. Steatotic livers show impaired regenerative response and reduced tolerance to hepatic injury. We examined the effects of tauroursodeoxycholic acid (TUDCA) and 4-phenyl butyric acid (PBA) in steatotic and non-steatotic livers during partial hepatectomy under I/R (PH+I/R). Their effects on the induction of unfolded protein response (UPR) and endoplasmic reticulum (ER) stress were also evaluated. We report that PBA, and especially TUDCA, reduced inflammation, apoptosis and necrosis, and improved liver regeneration in both liver types. Both compounds, especially TUDCA, protected both liver types against ER damage, as they reduced the activation of two of the three pathways of UPR (namely inositol-requiring enzyme and PKR-like ER kinase) and their target molecules caspase 12, c-Jun N-terminal kinase and C/EBP homologous protein-10. Only TUDCA, possibly mediated by extracellular signal-regulated kinase upregulation, inactivated glycogen synthase kinase-3β. This is turn, inactivated mitochondrial voltage-dependent anion channel, reduced cytochrome c release from the mitochondria and caspase 9 activation and protected both liver types against mitochondrial damage. These findings indicate that chemical chaperones, especially TUDCA, could protect steatotic and non-steatotic livers against injury and regeneration failure after PH+I/R. Topics: Activating Transcription Factor 6; Animals; Caspase 12; Cytochromes c; Endoplasmic Reticulum; Fatty Liver; Glycogen Synthase Kinase 3; Glycogen Synthase Kinase 3 beta; Heat-Shock Proteins; Hepatectomy; JNK Mitogen-Activated Protein Kinases; Liver; Mitochondria; Phenylbutyrates; Rats; Rats, Zucker; Reperfusion Injury; Taurochenodeoxycholic Acid; Unfolded Protein Response; Voltage-Dependent Anion Channels | 2010 |
Endoplasmic reticulum stress plays a central role in development of leptin resistance.
Leptin has not evolved as a therapeutic modality for the treatment of obesity due to the prevalence of leptin resistance in a majority of the obese population. Nevertheless, the molecular mechanisms of leptin resistance remain poorly understood. Here, we show that increased endoplasmic reticulum (ER) stress and activation of the unfolded protein response (UPR) in the hypothalamus of obese mice inhibits leptin receptor signaling. The genetic imposition of reduced ER capacity in mice results in severe leptin resistance and leads to a significant augmentation of obesity on a high-fat diet. Moreover, we show that chemical chaperones, 4-phenyl butyric acid (PBA), and tauroursodeoxycholic acid (TUDCA), which have the ability to decrease ER stress, act as leptin-sensitizing agents. Taken together, our results may provide the basis for a novel treatment of obesity. Topics: Animals; Endoplasmic Reticulum; Hypothalamus; Leptin; Mice; Mice, Inbred C57BL; Mice, Obese; Obesity; Phenylbutyrates; Receptors, Leptin; Signal Transduction; Taurochenodeoxycholic Acid; Tunicamycin | 2009 |
Cellular osmolytes reduce lens epithelial cell death and alleviate cataract formation in galactosemic rats.
Many cataractogenic stresses also induce endoplasmic reticulum (ER) stress in lens epithelial cells (LECs), which appears to be one of the universal inducers of cell death. In galactosemic rats, activation of ER stress results in the activation of the unfolded protein response (UPR)-dependent death pathway, production of reactive oxygen species (ROS), and cell death. All are induced and precede cataract formation. Cellular osmolytes such as 4-phenylbutyric acid (PBA), trimethylamine N-oxide (TMAO), and tauroursodeoxychoric acid (TUDCA) are known to suppress the induction of ER stress. We investigated whether these small molecules prevent cataract formation in galactose-fed rat lenses.. Cultured LECs were treated with galactose and each cellular osmolyte. Sprague-Dawley rats were fed a 50% galactose chow for 15 days with or without cellular osmolyte treatment. Similarly, selenite was injected subcutaneously into rats with or without cellular osmolytes. Calcein AM and ethidium homodimer-1 (EthD) were used to detect live and dead cells, respectively. The cellular osmolytes, PBA, TMAO, and TUDCA were tested for their ability to suppress LEC death and cataract formation.. Cellular osmolytes rescued cultured human LECs which were treated with the ER stressors. We administered these osmolytes either orally or by injection into galactosemic Sprague-Dawley rats. These rats had significantly reduced LEC death and partially delayed hypermature cataract formation. Since the UPR was not activated in cultured LECs treated with selenite, we used the selenite nuclear cataract as a UPR-independent death pathway control. In selenite-induced nuclear cataract in rats, cellular osmolytes did not prevent LEC death and did not alleviate cataract formation.. These results further establish that ER stress and LEC death play a vital role in certain types of cataract formation. In addition, cellular osmolytes may be potential prophylactic drugs for some types of cataracts. Topics: Animals; Body Weight; Cataract; Cell Death; Cell Survival; Cells, Cultured; Disease Models, Animal; Endoplasmic Reticulum; Epithelial Cells; Galactose; Galactosemias; Humans; Lens, Crystalline; Methylamines; Phenylbutyrates; Protein Folding; Rats; Rats, Sprague-Dawley; Sodium Selenite; Taurochenodeoxycholic Acid; Tunicamycin; Up-Regulation | 2007 |
Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes.
Endoplasmic reticulum (ER) stress is a key link between obesity, insulin resistance, and type 2 diabetes. Here, we provide evidence that this mechanistic link can be exploited for therapeutic purposes with orally active chemical chaperones. 4-Phenyl butyric acid and taurine-conjugated ursodeoxycholic acid alleviated ER stress in cells and whole animals. Treatment of obese and diabetic mice with these compounds resulted in normalization of hyperglycemia, restoration of systemic insulin sensitivity, resolution of fatty liver disease, and enhancement of insulin action in liver, muscle, and adipose tissues. Our results demonstrate that chemical chaperones enhance the adaptive capacity of the ER and act as potent antidiabetic modalities with potential application in the treatment of type 2 diabetes. Topics: Adipose Tissue; Animals; Blood Glucose; Cell Line, Tumor; Diabetes Mellitus, Type 2; Disease Models, Animal; eIF-2 Kinase; Endoplasmic Reticulum; Enzyme Activation; Eukaryotic Initiation Factor-2; Glucose; Glucose Tolerance Test; Homeostasis; Insulin; Insulin Resistance; JNK Mitogen-Activated Protein Kinases; Liver; Mice; Mice, Obese; Phenylbutyrates; Phosphorylation; Receptor, Insulin; Signal Transduction; Taurochenodeoxycholic Acid | 2006 |