tas-116 and geldanamycin
tas-116 has been researched along with geldanamycin* in 2 studies
Reviews
1 review(s) available for tas-116 and geldanamycin
Article | Year |
---|---|
Heat Shock Protein 90 Inhibitors: An Update on Achievements, Challenges, and Future Directions.
Hsp90 is one of the most important chaperones involved in regulating the maturation of more than 300 client proteins, many of which are closely associated with refractory diseases, including cancer, neurodegenerative diseases, and viral infections. Clinical Hsp90 inhibitors bind to the ATP pocket in the N-terminal domain of Hsp90 and subsequently suppress the ATPase activity of Hsp90. Recently, with the increased understanding of the discrepancies in the isoforms of Hsp90 and the modes of Hsp90-co-chaperone-client complex interactions, some new strategies for Hsp90 inhibition have emerged. Novel Hsp90 inhibitors that offer selective suppression of Hsp90 isoforms or specific disruption of Hsp90-co-chaperone protein-protein interactions are expected to show with satisfactory efficacy and safety profiles. This review summarizes the recent progress in Hsp90 inhibitors. Additionally, Hsp90 inhibitory strategies are emphasized in this review. Topics: Animals; Antineoplastic Agents; Autoimmune Diseases; Benzoquinones; Forecasting; HSP90 Heat-Shock Proteins; Humans; Immunosuppressive Agents; Lactams, Macrocyclic; Molecular Chaperones; Neoplasms; Protein Binding; Protein Structure, Secondary; Protein Structure, Tertiary | 2020 |
Other Studies
1 other study(ies) available for tas-116 and geldanamycin
Article | Year |
---|---|
TAS-116, a Well-Tolerated Hsp90 Inhibitor, Prevents the Activation of the NLRP3 Inflammasome in Human Retinal Pigment Epithelial Cells.
Chronic inflammation has been associated with several chronic diseases, such as age-related macular degeneration (AMD). The NLRP3 inflammasome is a central proinflammatory signaling complex that triggers caspase-1 activation leading to the maturation of IL-1β. We have previously shown that the inhibition of the chaperone protein, Hsp90, prevents NLRP3 activation in human retinal pigment epithelial (RPE) cells; these are cells which play a central role in the pathogenesis of AMD. In that study, we used a well-known Hsp90 inhibitor geldanamycin, but it cannot be used as a therapy due to its adverse effects, including ocular toxicity. Here, we have tested the effects of a novel Hsp90 inhibitor, TAS-116, on NLRP3 activation using geldanamycin as a reference compound. Using our existing protocol, inflammasome activation was induced in IL-1α-primed ARPE-19 cells with the proteasome and autophagy inhibitors MG-132 and bafilomycin A1, respectively. Intracellular caspase-1 activity was determined using a commercial caspase-1 activity kit and the FLICA assay. The levels of IL-1β were measured from cell culture medium samples by ELISA. Cell viability was monitored by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test and lactate dehydrogenase (LDH) measurements. Our findings show that TAS-116 could prevent the activation of caspase-1, subsequently reducing the release of mature IL-1β. TAS-116 has a better Topics: Benzamides; Benzoquinones; Caspase 1; Cell Line; Cell Survival; Enzyme Activation; Epithelial Cells; HSP70 Heat-Shock Proteins; HSP90 Heat-Shock Proteins; Humans; Inflammasomes; Interleukin-1beta; Interleukin-8; Lactams, Macrocyclic; NLR Family, Pyrin Domain-Containing 3 Protein; Pyrazoles; Retinal Pigment Epithelium | 2021 |