tannins has been researched along with uranyl-acetate* in 2 studies
2 other study(ies) available for tannins and uranyl-acetate
Article | Year |
---|---|
Ultrastructural visualization of elastic fibres with a tannate--metal salt method.
A modification of the tannic acid-metal salt method was applied as an ultrastructural stain for elastin. Thin sections of glutaraldehyde-fixed, embedded rat aorta and rabbit elastic cartilage, with and without osmication, were examined. Raising the pH of the tannic acid solution from 2.7 to 9.0 progressively increased the electron-density of elastic fibres and collagen fibrils in osmicated and unosmicated specimens. The maximum tannic acid staining of elastic fibres was observed in the pH range 7.0-9.0. Collagen staining, although less intense than that of elastic fibres, was also greatest in this pH range. Elastic fibres in osmicated specimens demonstrated the strongest tannic acid staining with a minimal increase in density of collagen and cell nuclei when compared to the unosmicated specimens. Sequential treatments of osmicated specimens with tannic acid pH 7.0-9.0, and uranyl acetate, pH 4.1, enhanced the density of the elastin intensely, increased collagen staining moderately, but hardly increased the density of nuclei and microfibrils. In elastase-digested osmicated specimens, all tannic acid (pH 7.0)-uranyl acetate-reactive elastin was selectively removed. These results demonstrate that all the neutral and alkaline tannic acid-uranyl acetate methods can be used as a postembedment stain for elastin specimens fixed in glutaraldehyde and osmium tetroxide. Topics: Animals; Aorta; Ear, External; Elastic Tissue; Elastin; Fixatives; Hydrolyzable Tannins; Organometallic Compounds; Rabbits; Rats; Rats, Inbred Strains; Staining and Labeling; Tannins; Uranium | 1985 |
Ultrastructural visualization of complex carbohydrates in epiphyseal cartilage with the tannic acid-metal salt methods.
The present study has ultrastructurally applied the tannic acid-ferric chloride (TA-Fe) and the TA-uranyl acetate (TA-UA) methods to thin sections of glutaraldehyde-fixed, unosmicated embedded epiphyseal cartilage from rat tibiae to demonstrate complex carbohydrates. The strongest TA-Fe and TA-UA staining was observed after fixation of the specimens in glutaraldehyde containing TA. TA-Fe (pH 1.5) strongly stained matrix granules presumed to be proteoglycan monomers and chondrocyte secretory granules at various maturational stages but did not stain collagen fibrils and glycogen. TA-UA (pH 4.2) strongly stained matrix granules, intracellular glycogen, and chondrocyte secretory granules, and moderately stained collagen fibrils in the cartilage matrix. Ribosomes and nuclei were not stained above background staining with UA alone. In alpha-amylase-digested specimens, all TA-UA-reactive cytoplasmic glycogen was selectively removed. Testicular hyaluronidase digestion of specimens selectively removed TA-UA staining in matrix granules and all TA-Fe staining. When the pH of the UA solution was reduced to 1.5, TA-UA staining of glycogen and collagen was markedly decreased or absent, whereas staining of anionic sites was unaltered and significantly greater than with UA staining alone. Thus the TA-metal salt methods are pH dependent and allow differential intracellular and extracellular localization of complex carbohydrates in cartilage tissues at the electron microscope level. Topics: Animals; Cartilage; Chlorides; Collagen; Epiphyses; Ferric Compounds; Hydrolyzable Tannins; Iron; Methods; Organometallic Compounds; Proteoglycans; Rats; Rats, Inbred Strains; Staining and Labeling; Tannins; Uranium | 1983 |