tannins and pterostilbene

tannins has been researched along with pterostilbene* in 2 studies

Other Studies

2 other study(ies) available for tannins and pterostilbene

ArticleYear
The effect of resveratrol, its naturally occurring derivatives and tannic acid on the induction of cell cycle arrest and apoptosis in rat C6 and human T98G glioma cell lines.
    Toxicology in vitro : an international journal published in association with BIBRA, 2017, Volume: 43

    Topics: Adjuvants, Pharmaceutic; Animals; Apoptosis; Cell Cycle Checkpoints; Cell Line, Tumor; Cell Proliferation; Cell Survival; Glioma; Humans; Membrane Potential, Mitochondrial; Rats; Resveratrol; Stilbenes; Tannins

2017
Effect of tannic acid, resveratrol and its derivatives, on oxidative damage and apoptosis in human neutrophils.
    Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association, 2015, Volume: 84

    In this study we compared the antioxidant and DNA protective activity of tannic acid and stilbene derivatives, resveratrol, 3,5,4(')-trimethoxystilbene (TMS) and pterostilbene in human neutrophils stimulated to oxidative burst by 12-O-tetradecanoyl-phorbol-13-acetate (TPA) in relation to apoptosis induction. All polyphenols within the concentration range 1-100 μM reduced the intracellular ROS and H2O2 production in the TPA-stimulated cells. Tannic acid was the most effective polyphenol in protection against DNA damage induced by TPA. In the resting neutrophils resveratrol and to lesser extent other polyphenols increased DNA damage and increased the level of p53. Pretreatment of the TPA-stimulated cells with tannic acid or stilbenes led to the induction of apoptosis. The most significant effect was observed as a result of treatment with TMS and resveratrol. These compounds appeared the most effective inducers of p53 in the TPA-challenged neutrophils, what may suggest that pro-apoptotic activity of these stilbenes might be related to p53 activation. Overall, the results of our present study demonstrate that tannic acid and stilbenes modulate the ROS production, ultimately leading to cell apoptosis in human neutrophils stimulated to oxidative burst. In resting neutrophils they exhibit pro-oxidant activity, which is accompanied by p53 induction.

    Topics: Anti-Inflammatory Agents, Non-Steroidal; Antioxidants; Apoptosis; Biomarkers; Carcinogens; Cells, Cultured; DNA Damage; Humans; Hydrogen Peroxide; Neutrophil Activation; Neutrophils; Oxidants; Oxidative Stress; Reactive Oxygen Species; Resveratrol; Stilbenes; Tannins; Tetradecanoylphorbol Acetate; Tumor Suppressor Protein p53

2015