tannins has been researched along with homoserine-lactone* in 3 studies
1 review(s) available for tannins and homoserine-lactone
Article | Year |
---|---|
Next generation quorum sensing inhibitors: Accounts on structure activity relationship studies and biological activities.
Bacterial resistance is a growing threat which represents major scourge throughout the world. The suitable way to control the present critical situation of antimicrobial resistance would be to develop entirely novel strategies to fight antibiotic resistant pathogens such as quorum sensing (QS) inhibitors or its combination with antibiotics. Anti QS agents can eliminate the QS signals and put the barrier in bio-film formation, consequently, bacterial virulence will be reduced without causing drug-resistance to the pathogens. Among the various anti QS agents identified, especially those of natural origin, furanones or acylatedhomoserine lactones (AHLs) are most popular. Semi-synthetic and synthetic inhibitors have shown greatest potential and have inspired chemists to design synthetically modified QS inhibitors with lactone moiety. This review focuses on anti QS agents (bio-film inhibitors) of both natural and synthetic origins. Further, the synthesis, structure activity relationship and anti QS activity covering literature from 2015 till March 2020 has been discussed. Topics: 4-Butyrolactone; Anti-Bacterial Agents; Biofilms; Cobalt; Coordination Complexes; Drug Design; Furans; Quorum Sensing; Staphylococcus aureus; Structure-Activity Relationship | 2020 |
2 other study(ies) available for tannins and homoserine-lactone
Article | Year |
---|---|
Disruption of the quorum sensing regulated pathogenic traits of the biofilm-forming fish pathogen Aeromonas hydrophila by tannic acid, a potent quorum quencher.
The quorum sensing (QS) phenomenon regulates a myriad of pathogenic traits in the biofilm forming fish pathogen, Aeromonas hydrophila. Blocking the QS mechanism of A. hydrophila is a novel strategy to prevent disease in fish. This study evaluated the effect of tannic acid, a QS inhibitor, on A. hydrophila-associated QS regulated phenomena. A streaking assay with Chromobacterium violaceum (CVO26) reported the presence of N-acyl homoserine lactone (AHL) in A. hydrophila, which was confirmed by HPLC and GC-MS analysis. Tannic acid-treated A. hydrophila showed a considerable reduction in violacein production, blood haemolysis activity and the pattern of swarming motility. Biofilm formation was significantly reduced (p < 0.001) (up to 95%), after tannic acid treatment for 48 h. Analysis by qRT-PCR revealed significant downregulation (p < 0.001) of AhyI and AhyR transcripts in A. hydrophila after tannic acid treatment. Co-stimulation of Catla catla with A. hydrophila and tannic acid attenuated pathogen-induced skin haemorrhages and increased the relative survival rate up to 86.6%. The study provides a mechanistic basis of tannic acid as a QS blocker and indicates its therapeutic potential against A. hydrophila-induced pathogenesis. Topics: 4-Butyrolactone; Aeromonas hydrophila; Animals; Bacterial Proteins; Biofilms; Chromobacterium; Cyprinidae; Dose-Response Relationship, Drug; Down-Regulation; Quorum Sensing; Tannins; Virulence | 2017 |
Non-antibiotic quorum sensing inhibitors acting against N-acyl homoserine lactone synthase as druggable target.
N-acylhomoserine lactone (AHL)-based quorum sensing (QS) is important for the regulation of proteobacterial virulence determinants. Thus, the inhibition of AHL synthases offers non-antibiotics-based therapeutic potentials against QS-mediated bacterial infections. In this work, functional AHL synthases of Pseudomonas aeruginosa LasI and RhlI were heterologously expressed in an AHL-negative Escherichia coli followed by assessments on their AHLs production using AHL biosensors and high resolution liquid chromatography-mass spectrometry (LCMS). These AHL-producing E. coli served as tools for screening AHL synthase inhibitors. Based on a campaign of screening synthetic molecules and natural products using our approach, three strongest inhibitors namely are salicylic acid, tannic acid and trans-cinnamaldehyde have been identified. LCMS analysis further confirmed tannic acid and trans-cinnemaldehyde efficiently inhibited AHL production by RhlI. We further demonstrated the application of trans-cinnemaldehyde inhibiting Rhl QS system regulated pyocyanin production in P. aeruginosa up to 42.06%. Molecular docking analysis suggested that trans-cinnemaldehyde binds to the LasI and EsaI with known structures mainly interacting with their substrate binding sites. Our data suggested a new class of QS-inhibiting agents from natural products targeting AHL synthase and provided a potential approach for facilitating the discovery of anti-QS signal synthesis as basis of novel anti-infective approach. Topics: 4-Butyrolactone; Anti-Bacterial Agents; Bacterial Proteins; Binding Sites; Biofilms; Biosensing Techniques; Escherichia coli; Ligases; Pseudomonas aeruginosa; Quorum Sensing; Salicylic Acid; Tannins; Virulence Factors | 2014 |