tannins and dieckol

tannins has been researched along with dieckol* in 13 studies

Reviews

1 review(s) available for tannins and dieckol

ArticleYear
Pharmacological Applications of Phlorotannins: A Comprehensive Review.
    Current drug discovery technologies, 2021, Volume: 18, Issue:2

    Seaweeds, including marine brown algae, are traditional food sources in Asia. Phlorotannins, as the product of the polyketide pathway, are mainly found in brown algae. Different properties have been attributed to this group of marine products ranging from antiallergic to anticancer activity. Mechanism of action is not obvious for all these properties, but there are some explanations for such effects.. The current study aimed to review the phlorotannins and to assess the beneficial uses in medicine.. Different databases were explored with the exact terms "Phlorotannin", "Seaweed" and "Brown Algae". Data assembly was finalized by June 2019. The papers showing the effects of phlorotannins in medicine were gathered and evaluated for further assessment.. General physiological aspects of phlorotannins were firstly evaluated. Different arrays of pharmacological properties ranging from anti-diabetic activity to cancer treatment were found. The mechanism of action for some of these beneficiary properties has been confirmed through rigorous examinations, but there are some features with unknown mechanisms.. Phlorotannins are characterized as a multifunctional group of natural products. Potential antioxidant characteristics could be attributed to preventive and/or their curative role in various diseases.

    Topics: Anticoagulants; Antineoplastic Agents; Antioxidants; Benzofurans; Biological Products; Humans; Hypoglycemic Agents; Neuroprotective Agents; Phaeophyceae; Phloroglucinol; Tannins

2021

Other Studies

12 other study(ies) available for tannins and dieckol

ArticleYear
Dieckol Ameliorates Aβ Production via PI3K/Akt/GSK-3β Regulated APP Processing in SweAPP N2a Cell.
    Marine drugs, 2021, Mar-15, Volume: 19, Issue:3

    The proteolytic processing of amyloid precursor protein (APP) by β-secretase (BACE1) and γ-secretase releases amyloid-β peptide (Aβ), which deposits in amyloid plaques and contributes to the initial causative events of Alzheimer's disease (AD). In the present study, the regulatory mechanism of APP processing of three phlorotannins was elucidated in Swedish mutant APP overexpressed N2a (SweAPP N2a) cells. Among the tested compounds, dieckol exhibited the highest inhibitory effect on both intra- and extracellular Aβ accumulation. In addition, dieckol regulated the APP processing enzymes, such as α-secretase (ADAM10), β-secretase, and γ-secretase, presenilin-1 (PS1), and their proteolytic products, sAPPα and sAPPβ, implying that the compound acts on both the amyloidogenic and non-amyloidogenic pathways. In addition, dieckol increased the phosphorylation of protein kinase B (Akt) at Ser473 and GSK-3β at Ser9, suggesting dieckol induced the activation of Akt, which phosphorylated GSK-3β. The specific phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 triggered GSK-3β activation and Aβ expression. In addition, co-treatment with LY294002 noticeably blocked the effect of dieckol on Aβ production, demonstrating that dieckol promoted the PI3K/Akt signaling pathway, which in turn inactivated GSK-3β, resulting in the reduction in Aβ levels.

    Topics: Alzheimer Disease; Amyloid beta-Peptides; Amyloid beta-Protein Precursor; Animals; Benzofurans; Cell Line; Chromones; Glycogen Synthase Kinase 3 beta; Mice; Morpholines; Phosphatidylinositol 3-Kinase; Proto-Oncogene Proteins c-akt; Signal Transduction; Tannins

2021
Dual BACE1 and Cholinesterase Inhibitory Effects of Phlorotannins from
    Marine drugs, 2019, Feb-01, Volume: 17, Issue:2

    Alzheimer's disease (AD) is one of the most common neurodegenerative diseases with a multifactorial nature. β-Secretase (BACE1) and acetylcholinesterase (AChE), which are required for the production of neurotoxic β-amyloid (Aβ) and the promotion of Aβ fibril formation, respectively, are considered as prime therapeutic targets for AD. In our efforts towards the development of potent multi-target, directed agents for AD treatment, major phlorotannins such as eckol, dieckol, and 8,8'-bieckol from

    Topics: ADAM17 Protein; Alzheimer Disease; Amyloid Precursor Protein Secretases; Aspartic Acid Endopeptidases; Benzofurans; Cholinesterase Inhibitors; Cholinesterases; Dioxins; Molecular Docking Simulation; Seaweed; Tannins

2019
First evidence that Ecklonia cava-derived dieckol attenuates MCF-7 human breast carcinoma cell migration.
    Marine drugs, 2015, Mar-30, Volume: 13, Issue:4

    We investigated the effect of Ecklonia cava (E. cava)-derived dieckol on movement behavior and the expression of migration-related genes in MCF-7 human breast cancer cell. Phlorotannins (e.g., dieckol, 6,6'-biecko, and 2,7″-phloroglucinol-6,6'-bieckol) were purified from E. cava by using centrifugal partition chromatography. Among the phlorotannins, we found that dieckol inhibited breast cancer cell the most and was selected for further study. Radius™-well was used to assess cell migration, and dieckol (1-100 µM) was found to suppress breast cancer cell movement. Metastasis-related gene expressions were evaluated by RT-PCR and Western blot analysis. In addition, dieckol inhibited the expression of migration-related genes such as matrix metalloproteinase (MMP)-9 and vascular endothelial growth factor (VEGF). On the other hand, it stimulated the expression of tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2. These results suggest that dieckol exerts anti-breast cancer activity via the regulation of the expressions of metastasis-related genes, and this is the first report on the anti-breast cancer effect of dieckol.

    Topics: Antineoplastic Agents; Benzofurans; Breast Neoplasms; Cell Movement; Cell Survival; Dioxanes; Dioxins; Drug Discovery; Female; Gene Expression Regulation, Neoplastic; Humans; Matrix Metalloproteinase 9; MCF-7 Cells; Neoplasm Proteins; Pacific Ocean; Phaeophyceae; Phloroglucinol; Republic of Korea; Seaweed; Tannins; Tissue Inhibitor of Metalloproteinase-1; Tissue Inhibitor of Metalloproteinase-2; Vascular Endothelial Growth Factor A

2015
Anti-HIV-1 activity of phlorotannin derivative 8,4‴-dieckol from Korean brown alga Ecklonia cava.
    Bioscience, biotechnology, and biochemistry, 2014, Volume: 78, Issue:7

    8,4‴-dieckol is a natural product which has been isolated from brown alga, Ecklonia cava. This polyphenolic compound is a phlorotannin derivative with a broad range of bioactivities. Its inhibitory activity on human immunodeficiency virus type-1 (HIV-1) was tested and the results indicated that 8,4‴-dieckol inhibited HIV-1 induced syncytia formation, lytic effects, and viral p24 antigen production at noncytotoxic concentrations. Furthermore, it was found that 8,4‴-dieckol selectively inhibited the activity of HIV-1 reverse trancriptase (RT) enzyme with 91% inhibition ratio at the concentration of 50 μM. HIV-1 entry was also inhibited by 8,4‴-dieckol. According to data from this study, 8,4‴-dieckol is an effective compound against HIV-1 with high potential for further studies. These results suggest that it might be used as a drug candidate for the development of new generation therapeutic agents, although further studies on the mechanism of inhibition should be addressed.

    Topics: Anti-HIV Agents; Benzofurans; Cell Line; Cell Survival; Cytopathogenic Effect, Viral; Giant Cells; HIV Core Protein p24; HIV Reverse Transcriptase; HIV-1; Humans; Phaeophyceae; T-Lymphocytes; Tannins; Virus Internalization

2014
Pancreatic lipase inhibitory activity of phlorotannins isolated from Eisenia bicyclis.
    Phytotherapy research : PTR, 2013, Volume: 27, Issue:1

    Pancreatic lipase is a potential therapeutic target for the treatment of diet-induced obesity in humans. In an ongoing search for new pancreatic lipase inhibitors from natural sources, a methanolic extract of marine brown algae, Eisenia bicyclis, showed a significant inhibitory effect against pancreatic lipase. Bioassay-guided isolation of this methanolic extract using a pancreatic lipase inhibitory assay led to the isolation and identification of six known phlorotannins: eckol (1), fucofuroeckol A (2), 7-phloroeckol (3), dioxindehydroeckol (4), phlorofucofuroeckol A (5), and dieckol (6). The structures were established on the basis of nuclear magnetic resonance and mass spectrometry spectroscopic data interpretation. Among the isolated phloroglucinol polymers, compounds 2 and 3 showed potent inhibitory effects on pancreatic lipase with IC₅₀ values ranging from 37.2 ± 2.3 to 12.7 ± 1.0 μM, respectively.

    Topics: Animals; Benzofurans; Dioxins; Inhibitory Concentration 50; Lipase; Oxindoles; Phaeophyceae; Swine; Tannins

2013
Isolation and structural determination of two novel phlorotannins from the brown alga Ecklonia kurome Okamura, and their radical scavenging activities.
    Marine drugs, 2013, Jan-18, Volume: 11, Issue:1

    Two novel phlorotannins with a molecular weight of 974, temporarily named 974-A and 974-B, were isolated from the polyphenol powder prepared from the edible marine brown alga Ecklonia kurome Okamura, and their chemical structures were determined by spectroscopic method. The isolated yield of the total of 974-A and 974-B was approximately 4% (w/w) from the polyphenol powder. In 974-A, the carbon at the C2' position in the A ring of phlorofucofuroeckol-A forms a C-C bond with the carbon at the C2″ position of the C ring of triphloretol-B, while in 974-B, phlorofucofuroeckol-B and triphloretol-B form a C-C bond in the same manner as in 974-A. These structures were supported by high resolution-MS/MS data. To evaluate the antioxidant activities, the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay and intracellular radical scavenging assay, using 2',7'-dichlorofluorescin diacetate (DCFH-DA), were performed for 974-A, 974-B, and four known phlorotannins. The results of the DPPH assay showed that the IC(50) values of 974-A, 974-B, phlorofucofuroeckol-A, and dieckol were significantly smaller than those of phlorofucofuroeckol-B, phloroglucinol, α-tocopherol, and ascorbic acid. Furthermore, the DCFH-DA assay suggested that 974-A, 974-B, and dieckol reduce intracellular reactive oxygen species most strongly among the tested compounds.

    Topics: alpha-Tocopherol; Animals; Antioxidants; Ascorbic Acid; Benzofurans; Biphenyl Compounds; Cell Line; Cell Line, Tumor; Dioxins; Fluoresceins; Free Radical Scavengers; Humans; Mass Spectrometry; Mice; Phaeophyceae; Phloroglucinol; Picrates; Polyphenols; Tannins

2013
Vascular barrier protective effects of phlorotannins on HMGB1-mediated proinflammatory responses in vitro and in vivo.
    Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association, 2012, Volume: 50, Issue:6

    The phlorotannins (phloroglucinol, eckol, and dieckol) are active compounds found in Eisenia bicyclis, and have been widely investigated for their antioxidant, anti-tumor, and anti-cancer activities. In this study, we investigated the protective effects of these phlorotannins against pro-inflammatory responses in human umbilical vein endothelial cells (HUVECs) and in mice treated by high mobility group box 1 protein (HMGB1), and the signaling pathways involved. The protective activities of the phlorotannins were determined by measuring permeability, leukocyte adhesion and migration, and the activations of pro-inflammatory proteins in HMGB1-activated HUVECs. We found that the phlorotannins inhibited; lipopolysaccharide (LPS)-induced HMGB1 release, HMGB1-mediated barrier disruption, the expressions of cell adhesion molecules (CAMs), and the adhesion/transendothelial migration of leukocytes to human endothelial cells. The phlorotannins also suppressed acetic acid induced-hyperpermeability and carboxymethylcellulose-induced leukocytes migration in vivo. Further studies revealed that the hydroxyl groups on dieckol positively regulated these vascular barrier protective effects. Collectively, these results suggest that phloroglucinol, eckol, and dieckol protect vascular barrier integrity by inhibiting hyperpermeability, the expressions of CAMs, and the adhesion and migration of leukocytes, which confirms their potential usefulnesses for the treatment of vascular inflammatory diseases.

    Topics: Animals; Benzofurans; Blood Vessels; Blotting, Western; Cell Adhesion Molecules; Cell Membrane Permeability; Cell Movement; Cell Survival; Dioxins; Endothelium, Vascular; Enzyme-Linked Immunosorbent Assay; Epithelial Cells; Female; HMGB1 Protein; Humans; Inflammation; Kelp; Lipopolysaccharides; Mice; Mice, Inbred ICR; Phloroglucinol; Spectrometry, Mass, Electrospray Ionization; Tannins; Toll-Like Receptor 4

2012
Hepatoprotective effects of dieckol-rich phlorotannins from Ecklonia cava, a brown seaweed, against ethanol induced liver damage in BALB/c mice.
    Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association, 2012, Volume: 50, Issue:6

    Alcoholic liver disease, which is one of the most serious liver disorders, has been known to cause by ethanol intake. In the present study, in vivo hepatoprotective effects of dieckol-rich phlorotannins (DRP) from Ecklonia cava, a brown seaweed, on ethanol induced hepatic damage in BALB/c mice liver were investigated. After administration of 5 and 25mg/kg mouse of DRP and 4 g/kg mice ethanol, the body weights and survival rates were increased as compared to the control, which is ethanol-treated group without DRP. The glutamic oxaloacetic transaminase and glutamic pyruvic transaminase levels in the serum were lower than those of the control. DRP exhibited a reduction of the total cholesterol. The lower levels of SOD enzyme and a reduction of the formation of malondialdehyde were occurred in mice fed with 5 and 25mg/kg mouse of DRP. Finally the effect on improvement of fatty liver induced by ethanol was observed by taking out the liver immediately after dissecting the mouse. However, no significant difference was observed on hepatic histopathological changes. In conclusion, this study indicated that DRP could protect liver injury induced by ethanol in vivo. It suggested that DRP possesses the beneficial effect to human against ethanol-induced liver injury.

    Topics: Alanine Transaminase; Animals; Aspartate Aminotransferases; Benzofurans; Body Weight; Cholesterol; Glutathione Peroxidase; Hepatitis, Alcoholic; Lipid Peroxidation; Liver; Male; Malondialdehyde; Mice; Mice, Inbred BALB C; Republic of Korea; Seaweed; Survival; Tannins; Thiobarbituric Acid Reactive Substances

2012
Protein tyrosine phosphatase 1B and α-glucosidase inhibitory Phlorotannins from edible brown algae, Ecklonia stolonifera and Eisenia bicyclis.
    Bioscience, biotechnology, and biochemistry, 2011, Volume: 75, Issue:8

    The present work investigates protein tyrosine phosphatase 1B (PTP1B) and the α-glucosidase inhibitory activities of two edible brown algae, Ecklonia stolonifera and Eisenia bicyclis, as well as in their isolated phlorotannins. Since the individual extracts and fractions showed significant inhibitory activities, column chromatography was performed to isolate six phlorotannins, phloroglucinol (1), dioxinodehydroeckol (2), eckol (3), phlorofurofucoeckol-A (4), dieckol (5), and 7-phloroeckol (6). Phlorotannins 3-6 were potent and noncompetitive PTP1B inhibitors with IC(50) values ranging from 0.56 to 2.64 µM; 4-6 exhibited the most potent α-glucosidase inhibition with IC(50) values ranging from 1.37 to 6.13 µM. Interestingly, 4 and 6 were noncompetitive, while 5 exhibited competitive inhibition in an α-glucosidase assay. E. stolonifera and E. bicyclis as well as their isolated phlorotannins therefore possessed marked PTP1B and α-glucosidase inhibitory activities; this could lead to opportunities in the development of therapeutic agents to control the postprandial blood glucose level and thereby prevent diabetic complications.

    Topics: alpha-Glucosidases; Benzofurans; Blood Glucose; Complex Mixtures; Diabetes Mellitus; Dioxins; Enzyme Inhibitors; Glycoside Hydrolase Inhibitors; Humans; Hyperglycemia; Hypoglycemic Agents; Kinetics; Magnetic Resonance Spectroscopy; Phaeophyceae; Phloroglucinol; Protein Tyrosine Phosphatase, Non-Receptor Type 1; Solutions; Spectrophotometry; Tannins; Yeasts

2011
Quantitative determination of major phlorotannins in Ecklonia stolonifera.
    Archives of pharmacal research, 2010, Volume: 33, Issue:4

    Ecklonia stolonifera is a rich source of phlorotannins, which are responsible for the potent pharmacological effects associated with this seaweed. The purpose of this study was to develop a reversed-phase high-performance liquid chromatography method for the simultaneous determination of three major phlorotannins, eckol, dieckol, and phlorofucofuroeckol-A, in the extracts of Ecklonia stolonifera. The optimal chromatographic conditions were achieved on a Thermo Hypersil Gold C-18 column (250 x 4.6 mm i.d., 5 microm) using linear gradient elution of acetonitrile and water containing 0.1% formic acid at UV 254 nm. The separated phlorotannins were identified by liquid chromatography-mass spectrometry. The high-performance liquid chromatography method showed good linearity (r2 > 0.998), precision (1.4-9.5%), and accuracy (93.9-108.7%). The limits of detection ranged from 0.06 to 0.30 microg/mL and the lower limits of quantitation ranged from 0.2 to 1.0 microg/mL. Among phlorotannins, dieckol was the most abundant in both ethanol and ethyl acetate extracts of Ecklonia stolonifera.

    Topics: Benzofurans; Chromatography, High Pressure Liquid; Dioxins; Phaeophyceae; Plants, Medicinal; Spectrometry, Mass, Electrospray Ionization; Tannins

2010
Effect of phlorotannins isolated from Ecklonia cava on melanogenesis and their protective effect against photo-oxidative stress induced by UV-B radiation.
    Toxicology in vitro : an international journal published in association with BIBRA, 2009, Volume: 23, Issue:6

    In the present study, three kinds of phlorotannins, marine algal polyphenol, were isolated from a brown alga Ecklonia cava, and their inhibitory effect on melanogenesis as well as the protective effect against photo-oxidative stress induced by UV-B radiation was investigated. The effect on melanogenesis was evaluated via the inhibitory effects of tyrosinase and melanin synthesis. Among the phlorotannins, dieckol showed higher effect than that of the other phlorotannins in the both assays; especially the value of dieckol in the tyrosinase inhibition assay was relatively higher than that of a commercial tyrosinase inhibitor (kojic acid). The UV-B protection effect was evaluated via DCFH-DA, MTT, comet assays, and morphological changes in fibroblast. Intracellular ROS induced by UV-B radiation was reduced by the addition of phlorotannins and cell viability was dose-dependently increased. Moreover, dieckol demonstrated strong protective properties against UV-B radiation-induced DNA damage via damaged tail intensity and morphological changes in fibroblast. Hence, these results indicated that dieckol isolated from E. cava has potential whitening effects and prominent protective effects on UV-B radiation-induced cell damages, which might be used in pharmaceutical and cosmeceutical industries.

    Topics: Benzofurans; Cell Survival; Comet Assay; Dose-Response Relationship, Drug; Fibroblasts; Humans; Melanins; Monophenol Monooxygenase; Oxidative Stress; Phaeophyceae; Radiation-Protective Agents; Tannins; Ultraviolet Rays

2009
Anti-hyperlipidemic effect of an edible brown algae, Ecklonia stolonifera, and its constituents on poloxamer 407-induced hyperlipidemic and cholesterol-fed rats.
    Archives of pharmacal research, 2008, Volume: 31, Issue:12

    We conducted this study to isolate novel anti-hyperlipidemic agents derived from natural marine products. To accomplish this, we investigated the effects of ethanolic (EtOH) extracts of Ecklonia stolonifera and its phlorotannin constituents, eckol and dieckol, on serum lipid levels in rats with hyperlipidemia that was induced by a high-cholesterol diet or poloxamer 407. Treatment with the EtOH extracts of E. stolonifera and its phlorotannin-rich ethyl acetate (EtOAc) and n-butanol (n-BuOH) fractions induced a significant reduction in triglycerides (TG), total cholesterol (TC), and low-density lipoprotein-cholesterol (LDL-C) levels, as well as a significant increase in the high-density lipoprotein-cholesterol (HDLC) level in hyperlipidemic rats. However, treatment with the water (H(2)O) fraction did not exert any significant effects on the serum levels of hyperlipidemic rats. In addition, eckol and dieckol isolated from the active EtOAc fraction induced a significant reduction in serum TG, TC, and LDL-C levels, as well as in the atherogenic index (A.I.). Furthermore, treatment with dieckol induced a greater decrease in the serum TG, TC, and LDL-C levels of hyperlipidemic rats than eckol or lovastatin, as well as an increase in the serum HDL-C levels. Taken together, these results suggest that phlorotannins such as eckol and dieckol have the potential for use for the prevention of hyperlipidemic atherosclerosis.

    Topics: Animals; Benzofurans; Cholesterol, Dietary; Diet; Dioxins; Ethanol; Freeze Drying; Hyperlipidemias; Hypolipidemic Agents; Male; Phaeophyceae; Poloxamer; Rats; Rats, Sprague-Dawley; Solvents; Tannins; Triglycerides

2008