tamoxifen-aziridine has been researched along with ketononestrol-aziridine* in 3 studies
3 other study(ies) available for tamoxifen-aziridine and ketononestrol-aziridine
Article | Year |
---|---|
Structural requirements for high affinity ligand binding by estrogen receptors: a comparative analysis of truncated and full length estrogen receptors expressed in bacteria, yeast, and mammalian cells.
In order to better understand the structural requirements for effective high affinity binding of estrogens and antiestrogens by the human estrogen receptor (ER), a comparative study was undertaken in which we examined: 1) native ER from the MCF-7 ER-positive human breast cancer cell line; 2) full length ER expressed in yeast; 3) the ER hormone binding domain (amino acid residues 302-595) expressed in yeast; 4) a bacterially expressed protein A fusion product encoding a truncated ER (amino acid residues 240-595); and 5) a synthetic peptide encompassing amino acids 510-551 of the ER. The binding parameters studied included affinity, kinetics, structural specificity for ligands, and stability. Full length ER expressed in yeast was very similar to the MCF-7 ER in its affinity [dissociation constant (Kd), 0.35 +/- 0.05 nM], dissociation rate (t1/2, 3-4 h at 25 C), and structural specificity for both reversible and covalently attaching affinity ligands. While the truncated ER expressed in yeast was similar to MCF-7 ER in its specificity of ligand binding, it showed a slightly reduced affinity for estradiol (Kd, 1.00 +/- 0.17 nM). The bacterially expressed ER also had a lower affinity for estradiol (Kd, 1.49 +/- 0.16 nM), which may be due in part to an increase in the dissociation rate (t1/2, 0.5 h at 25 C). The attachment of covalent affinity ligands and structural specificity for a variety of reversible ligands was comparable in the bacterially expressed ER to that observed for the receptors expressed in MCF-7 cells and yeast.(ABSTRACT TRUNCATED AT 250 WORDS) Topics: Aziridines; Binding Sites; Breast Neoplasms; Escherichia coli; Estradiol; Humans; Ketones; Kinetics; Ligands; Neoplasm Proteins; Neoplasms, Hormone-Dependent; Peptide Fragments; Protein Binding; Protein Conformation; Receptors, Estrogen; Recombinant Fusion Proteins; Saccharomyces cerevisiae; Tamoxifen | 1992 |
Identification of cysteine 530 as the covalent attachment site of an affinity-labeling estrogen (ketononestrol aziridine) and antiestrogen (tamoxifen aziridine) in the human estrogen receptor.
Radiosequence analysis of peptide fragments of the estrogen receptor (ER) from MCF-7 human breast cancer cells has been used to identify cysteine 530 as the site of covalent attachment of an estrogenic affinity label, ketononestrol aziridine (KNA), and an antiestrogenic affinity label, tamoxifen aziridine (TAZ). ER from MCF-7 cells was covalently labeled with [3H]TAZ or [3H]KNA and purified to greater than 95% homogeneity by immunoadsorbent chromatography. Limit digest peptide fragments, generated by prolonged exposure of the labeled receptor to trypsin, cyanogen bromide, or Staphylococcus aureus V8 protease, were purified to homogeneity by high performance liquid chromatography (HPLC), and the position of the labeled residue was determined by sequential Edman degradation. With both aziridines, the labeled residue was at position 1 in the tryptic peptide, position 2 in the cyanogen bromide peptide, and position 7 in the V8 protease peptide. This localizes the site of labeling to a single cysteine at position 530 in the receptor sequence. The identity of cysteine as the site of labeling was confirmed by HPLC comparison of the TAZ-labeled amino acid (as the phenylthiohydantoin and phenylthiocarbamyl derivatives) and the KNA-labeled amino acid (as the phenylthiocarbamyl derivative) with authentic standards prepared by total synthesis. Cysteine 530 is located in the hormone binding domain of the receptor, near its carboxyl terminus. This location is consistent with earlier studies using sodium dodecyl sulfate-polyacrylamide gel electrophoresis to analyze the size of the proteolytic fragments containing the covalent labeling sites for TAZ and KNA and the antigen recognition sites for monoclonal antibodies. The fact that both the estrogenic and antiestrogenic affinity labeling agents react covalently with the same cysteine indicates that differences in receptor-agonist and receptor-antagonist complexes do not result in differential covalent labeling of amino acid residues in the hormone binding domain. Topics: Affinity Labels; Alkylation; Aziridines; Binding Sites; Chromatography, High Pressure Liquid; Cyanogen Bromide; Cysteine; Humans; Ketones; Peptide Fragments; Receptors, Estrogen; Serine Endopeptidases; Tamoxifen; Trypsin; Tumor Cells, Cultured | 1989 |
Comparative analysis of estrogen receptors covalently labeled with an estrogen and an antiestrogen in several estrogen target cells as studied by limited proteolysis.
Estrogen receptors covalently labeled with the estrogen affinity label [3H]ketononestrol aziridine (KNA) or with the antiestrogen affinity label [3H]tamoxifen aziridine (TAZ) were subjected to limited proteolysis with trypsin, alpha-chymotrypsin, and Staphylococcus aureus V8 protease and then analyzed on 10-20% sodium dodecyl sulfate-polyacrylamide gradient gels followed by fluorography. The similar molecular weights of intact receptors (Mr 66,000 daltons) and the proteolytic digest patterns indicate extensive homology among estrogen receptors from MCF-7 human breast cancer cells, GH4 rat pituitary cells and rat uterus when liganded with estrogen or antiestrogen. Each protease generated a distinctive ladder of estrogen receptor fragments, and the fragmentation patterns were virtually identical for estrogen receptors labeled with estrogen (KNA) or antiestrogen (TAZ). Each protease yielded a relatively "resistant" receptor fragment of about 28,000-35,000 daltons. Trypsin and chymotrypsin at higher concentrations generated a much smaller 6,000-8,000 dalton digest product that still contained the [3H]KNA- or [3H]TAZ-labeled receptor binding site. Moreover, the receptor digest patterns were similar for estrogen receptors from the three different target cells. Our studies suggest considerable structural relatedness among these three estrogen receptors and also indicate that these two affinity labels bind to a similar, perhaps identical, region of the receptor molecule. Topics: Affinity Labels; Animals; Aziridines; Azirines; Breast Neoplasms; Cell Line; Cell Nucleus; Female; Humans; Ketones; Peptide Fragments; Peptide Hydrolases; Pituitary Neoplasms; Rats; Rats, Inbred Strains; Receptors, Estrogen; Tamoxifen; Uterus | 1988 |