Page last updated: 2024-09-02

tadalafil and sildenafil

tadalafil has been researched along with sildenafil in 24 studies

Compound Research Comparison

Studies
(tadalafil)
Trials
(tadalafil)
Recent Studies (post-2010)
(tadalafil)
Studies
(sildenafil)
Trials
(sildenafil)
Recent Studies (post-2010) (sildenafil)
1,7423921,089134060

Protein Interaction Comparison

ProteinTaxonomytadalafil (IC50)sildenafil (IC50)
Chain A, cAMP-specific 3',5'-cyclic phosphodiesterase 4BHomo sapiens (human)20
Chain A, cAMP-specific 3',5'-cyclic phosphodiesterase 4BHomo sapiens (human)20
Chain A, cAMP-specific 3',5'-cyclic phosphodiesterase 4BHomo sapiens (human)20
Chain A, cAMP-specific 3',5'-cyclic phosphodiesterase 4BHomo sapiens (human)20
Chain A, cAMP-specific 3',5'-cyclic phosphodiesterase 4BHomo sapiens (human)20
Chain A, cAMP-specific 3',5'-cyclic phosphodiesterase 4BHomo sapiens (human)20
Chain A, cAMP-specific 3',5'-cyclic phosphodiesterase 4DHomo sapiens (human)20
Chain A, cAMP-specific 3',5'-cyclic phosphodiesterase 4DHomo sapiens (human)20
Chain A, cAMP-specific 3',5'-cyclic phosphodiesterase 4DHomo sapiens (human)20
Chain A, cAMP-specific 3',5'-cyclic phosphodiesterase 4DHomo sapiens (human)20
Chain A, cAMP-specific 3',5'-cyclic phosphodiesterase 4BHomo sapiens (human)20
Chain B, cAMP-specific 3',5'-cyclic phosphodiesterase 4BHomo sapiens (human)20
Chain A, cGMP-specific 3',5'-cyclic phosphodiesteraseHomo sapiens (human)20
Chain A, cGMP-specific 3',5'-cyclic phosphodiesteraseHomo sapiens (human)20
Chain A, cGMP-specific 3',5'-cyclic phosphodiesteraseHomo sapiens (human)0.0024
Chain A, cGMP-specific 3',5'-cyclic phosphodiesteraseHomo sapiens (human)0.0024
Phosphodiesterase Bos taurus (cattle)9.2
cGMP-dependent 3',5'-cyclic phosphodiesteraseHomo sapiens (human)2.881
Retinal rod rhodopsin-sensitive cGMP 3',5'-cyclic phosphodiesterase subunit deltaHomo sapiens (human)0.0187
cGMP-specific 3',5'-cyclic phosphodiesteraseRattus norvegicus (Norway rat)0.0012
High affinity cAMP-specific and IBMX-insensitive 3',5'-cyclic phosphodiesterase 8AHomo sapiens (human)2.881
cGMP-specific 3',5'-cyclic phosphodiesteraseHomo sapiens (human)0.2626
High affinity cGMP-specific 3',5'-cyclic phosphodiesterase 9AHomo sapiens (human)4.2
cGMP-specific 3',5'-cyclic phosphodiesteraseCanis lupus familiaris (dog)0.0024
Retinal rod rhodopsin-sensitive cGMP 3',5'-cyclic phosphodiesterase subunit gammaBos taurus (cattle)0.0374
Replicase polyprotein 1abSevere acute respiratory syndrome-related coronavirus8.247
Replicase polyprotein 1abSevere acute respiratory syndrome coronavirus 28.247
Rod cGMP-specific 3',5'-cyclic phosphodiesterase subunit alphaBos taurus (cattle)0.0545
Calcium/calmodulin-dependent 3',5'-cyclic nucleotide phosphodiesterase 1A Bos taurus (cattle)0.78
cAMP-specific 3',5'-cyclic phosphodiesterase 4D Rattus norvegicus (Norway rat)4.6
cAMP-specific 3',5'-cyclic phosphodiesterase 4CRattus norvegicus (Norway rat)4.6
cAMP-specific 3',5'-cyclic phosphodiesterase 4BRattus norvegicus (Norway rat)4.6
Rod cGMP-specific 3',5'-cyclic phosphodiesterase subunit alphaHomo sapiens (human)0.0187
Cone cGMP-specific 3',5'-cyclic phosphodiesterase subunit alpha'Bos taurus (cattle)0.0366
Retinal rod rhodopsin-sensitive cGMP 3',5'-cyclic phosphodiesterase subunit gammaHomo sapiens (human)0.0187
Retinal cone rhodopsin-sensitive cGMP 3',5'-cyclic phosphodiesterase subunit gammaBos taurus (cattle)0.0374
Rod cGMP-specific 3',5'-cyclic phosphodiesterase subunit betaBos taurus (cattle)0.0374
cAMP-specific 3',5'-cyclic phosphodiesterase 4AHomo sapiens (human)7.9333
Adenosine receptor A2aHomo sapiens (human)0.253
Adenosine receptor A1Homo sapiens (human)1.493
Delta-type opioid receptorRattus norvegicus (Norway rat)0.04
Prostaglandin G/H synthase 2Homo sapiens (human)0.003
Rod cGMP-specific 3',5'-cyclic phosphodiesterase subunit betaHomo sapiens (human)0.0187
Cone cGMP-specific 3',5'-cyclic phosphodiesterase subunit alpha'Homo sapiens (human)0.0418
cAMP-specific 3',5'-cyclic phosphodiesterase 4ARattus norvegicus (Norway rat)4.6
Calcium/calmodulin-dependent 3',5'-cyclic nucleotide phosphodiesterase 1AHomo sapiens (human)0.7199
Retinal rod rhodopsin-sensitive cGMP 3',5'-cyclic phosphodiesterase subunit gammaCanis lupus familiaris (dog)0.0182
Calcium/calmodulin-dependent 3',5'-cyclic nucleotide phosphodiesterase 1BBos taurus (cattle)0.78
Calcium/calmodulin-dependent 3',5'-cyclic nucleotide phosphodiesterase 1BHomo sapiens (human)1.8841
Calcium/calmodulin-dependent 3',5'-cyclic nucleotide phosphodiesterase 1BRattus norvegicus (Norway rat)0.3
Synaptic vesicular amine transporterRattus norvegicus (Norway rat)0.01
cAMP-specific 3',5'-cyclic phosphodiesterase 4BHomo sapiens (human)6.3336
cAMP-specific 3',5'-cyclic phosphodiesterase 4CHomo sapiens (human)8.52
cAMP-specific 3',5'-cyclic phosphodiesterase 4DHomo sapiens (human)5.7005
Potassium voltage-gated channel subfamily H member 2Homo sapiens (human)3.3075
cGMP-inhibited 3',5'-cyclic phosphodiesterase BHomo sapiens (human)4.7337
High affinity cAMP-specific 3',5'-cyclic phosphodiesterase 7AHomo sapiens (human)4.69
Retinal cone rhodopsin-sensitive cGMP 3',5'-cyclic phosphodiesterase subunit gammaHomo sapiens (human)0.0187
Calcium/calmodulin-dependent 3',5'-cyclic nucleotide phosphodiesterase 1CHomo sapiens (human)0.7398
cGMP-inhibited 3',5'-cyclic phosphodiesterase AHomo sapiens (human)4.6677
cGMP-specific 3',5'-cyclic phosphodiesteraseBos taurus (cattle)0.557
Calcium/calmodulin-dependent 3',5'-cyclic nucleotide phosphodiesterase 1CRattus norvegicus (Norway rat)0.3
Indoleamine 2,3-dioxygenase 2Mus musculus (house mouse)4.5
Retinal rod rhodopsin-sensitive cGMP 3',5'-cyclic phosphodiesterase subunit deltaBos taurus (cattle)0.0374
Phosphodiesterase Rattus norvegicus (Norway rat)0.3
Dual 3',5'-cyclic-AMP and -GMP phosphodiesterase 11AHomo sapiens (human)4.1584
cAMP-specific 3',5'-cyclic phosphodiesterase 7BHomo sapiens (human)3.6006
cAMP and cAMP-inhibited cGMP 3',5'-cyclic phosphodiesterase 10AHomo sapiens (human)4.2432

Research

Studies (24)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's10 (41.67)29.6817
2010's11 (45.83)24.3611
2020's3 (12.50)2.80

Authors

AuthorsStudies
Adam, L; Beyer, B; Chong, S; Ferrer, P; He, B; Henwood, A; Humphrey, WG; Krupinski, J; Macor, JE; Mason, H; Normandin, D; Pongrac, R; Seliger, L; Wang, J; Wu, X; Yu, G; Zhang, R1
Coste, H; Daugan, A; Grondin, P; Hyafil, F; Kirilovsky, J; Labaudinière, R; Le Monnier de Gouville, AC; Linget, JM; Ruault, C1
Artis, DR; Bollag, G; Card, GL; England, BP; Fong, D; Gillette, S; Ibrahim, PN; Kim, SH; Lee, B; Luu, C; Milburn, MV; Powell, B; Schlessinger, J; Suzuki, Y; Tabrizizad, M; Zhang, KY1
Bhattacharjee, S; Guan, J; Haynes-Johnson, D; Jiang, W; John, TM; Kraft, P; Lundeen, S; Macielag, MJ; Qiu, Y; Sui, Z; Zhang, S1
Asberom, T; Boyle, CD; Chackalamannil, S; Chintala, M; Clader, JW; Greenlee, WJ; Guzik, H; Hu, Y; Hu, Z; Kurowski, S; Lankin, CM; Myers, J; Palamanda, J; Pissarnitski, DA; Skell, J; Stamford, AW; Vemulapalli, S; Wang, P; Wang, Y; Wu, P; Xu, R1
Cesari, N; Dal Piaz, V; Feixas, J; Gavaldà, A; Giovannoni, MP; Graziano, A; Vergelli, C1
Hughes, RA; Manallack, DT; Thompson, PE1
Bilter, GK; Dias, J; Huang, Z; Keon, BH; Lamerdin, J; MacDonald, ML; Michnick, SW; Minami, T; Owens, S; Shang, Z; Westwick, JK; Yu, H1
Antunes, JE; da Cunha, EF; Freitas, MP; Ramalho, TC; Rittner, R1
Ahn, SK; Choi, H; Choi, NS; Han, CK; Hwang, IC; Im, DS; Kim, SJ; Kim, SW; Kim, YH; Lee, HW; Lee, J; Lee, KJ; Lee, SS; Moon, SK; Yoon, JH1
Ahn, SK; Choi, H; Choi, NS; Hwang, IC; Im, DS; Kim, SJ; Kim, SW; Kim, YH; Lee, HW; Lee, J; Lee, KJ; Lee, SS; Moon, SK1
Arancio, O; Deng, SX; Feng, Y; Fiorito, J; Francis, YI; Landry, DW; Rao, S; Saeed, F; Staniszewski, A; Thakkar, DM; Zhang, H1
Fujishige, K; Hikota, M; Kikkawa, K; Koga, Y; Kotera, J; Matsuki, K; Morimoto, H; Murakami, M; Omori, K; Sakamoto, T; Yamada, K1
Chen, M; Hu, C; Suzuki, A; Thakkar, S; Tong, W; Yu, K1
Cuadrado-Tejedor, M; de Miguel, I; Espelosin, M; Estella-Hermoso de Mendoza, A; García-Barroso, C; Garcia-Osta, A; Haizhong, T; Musheng, X; Oyarzabal, J; Pérez-González, M; Rabal, O; Sáez, E; Sánchez-Arias, JA; Ugarte, A; Ursua, S; Wei, W2
Huang, YY; Li, Z; Luo, HB; Wu, D; Wu, Y1
Leeson, PD; Young, RJ1
Chen, J; Chen, Y; Geng, H; Guo, L; Huang, Y; Huang, YY; Li, Z; Luo, HB; Wu, D; Zhang, C; Zhang, T1
Cheng, C; Jiang, Y; Lou, H; Qiao, Y; Sun, B; Tan, J; Wu, Y; Xie, Z; Zhao, S; Zheng, H1
Aisa, HA; Gong, X; He, Y; Jiang, H; Jiang, X; Li, J; Liu, Z; Shen, J; Shi, J; Suo, J; Tian, G; Wang, Y; Wang, Z; Wu, C; Wu, J; Xu, Y; Xu, Z; Yang, R; Yang, X; Zhang, R; Zhang, X; Zhu, W; Zou, X1
Dong, YH; Huang, XF; Ke, HM; Song, GQ; Wang, JH; Xu, DF1
Abadi, AH; Abdel-Halim, M; Engel, M; Fathalla, RK; Hammam, MA; Hartmann, RW; Hefnawy, A; Keeton, AB; Maher, A; Maxuitenko, Y; Piazza, GA; Racheed, NAS; Sigler, S1
Chai, S; Chen, S; Deng, L; Du, K; Shen, R; Sun, H; Sun, T; Xi, M; Xie, M1

Reviews

5 review(s) available for tadalafil and sildenafil

ArticleYear
The next generation of phosphodiesterase inhibitors: structural clues to ligand and substrate selectivity of phosphodiesterases.
    Journal of medicinal chemistry, 2005, May-19, Volume: 48, Issue:10

    Topics: Animals; Binding Sites; Crystallography, X-Ray; Cyclic AMP; Cyclic GMP; Drug Design; Humans; Models, Molecular; Molecular Structure; Phosphodiesterase Inhibitors; Quantitative Structure-Activity Relationship; Xanthines

2005
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
    Drug discovery today, 2016, Volume: 21, Issue:4

    Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk

2016
Novel Phosphodiesterase Inhibitors for Cognitive Improvement in Alzheimer's Disease.
    Journal of medicinal chemistry, 2018, 07-12, Volume: 61, Issue:13

    Topics: Alzheimer Disease; Animals; Cognition; Humans; Phosphodiesterase Inhibitors

2018
Mapping the Efficiency and Physicochemical Trajectories of Successful Optimizations.
    Journal of medicinal chemistry, 2018, 08-09, Volume: 61, Issue:15

    Topics: Animals; Chemical Phenomena; Drug Discovery; Humans; Hydrophobic and Hydrophilic Interactions

2018
Therapeutic potential of phosphodiesterase inhibitors for cognitive amelioration in Alzheimer's disease.
    European journal of medicinal chemistry, 2022, Mar-15, Volume: 232

    Topics: 3',5'-Cyclic-AMP Phosphodiesterases; Alzheimer Disease; Animals; Cognition; Cyclic GMP; Phosphodiesterase Inhibitors; Phosphoric Diester Hydrolases

2022

Other Studies

19 other study(ies) available for tadalafil and sildenafil

ArticleYear
Substituted pyrazolopyridopyridazines as orally bioavailable potent and selective PDE5 inhibitors: potential agents for treatment of erectile dysfunction.
    Journal of medicinal chemistry, 2003, Feb-13, Volume: 46, Issue:4

    Topics: 3',5'-Cyclic-GMP Phosphodiesterases; Administration, Oral; Animals; Biological Availability; Blood Pressure; Cyclic Nucleotide Phosphodiesterases, Type 5; Dogs; Enzyme Inhibitors; Erectile Dysfunction; Female; Male; Penis; Pyridazines; Rabbits; Rats; Structure-Activity Relationship

2003
The discovery of tadalafil: a novel and highly selective PDE5 inhibitor. 2: 2,3,6,7,12,12a-hexahydropyrazino[1',2':1,6]pyrido[3,4-b]indole-1,4-dione analogues.
    Journal of medicinal chemistry, 2003, Oct-09, Volume: 46, Issue:21

    Topics: 3',5'-Cyclic-GMP Phosphodiesterases; Animals; Blood Pressure; Carbolines; Cattle; Cyclic GMP; Cyclic Nucleotide Phosphodiesterases, Type 5; Drug Design; Hydantoins; Indicators and Reagents; Isomerism; Models, Molecular; Molecular Conformation; Muscle, Smooth, Vascular; Phosphodiesterase Inhibitors; Rats; Rats, Inbred SHR; Structure-Activity Relationship; Tadalafil

2003
Structural basis for the activity of drugs that inhibit phosphodiesterases.
    Structure (London, England : 1993), 2004, Volume: 12, Issue:12

    Topics: Binding Sites; Crystallography, X-Ray; Phosphodiesterase Inhibitors; Phosphoric Diester Hydrolases; Protein Structure, Tertiary

2004
Pyrroloquinolone PDE5 inhibitors with improved pharmaceutical profiles for clinical studies on erectile dysfunction.
    Journal of medicinal chemistry, 2005, Mar-24, Volume: 48, Issue:6

    Topics: 3',5'-Cyclic-GMP Phosphodiesterases; Animals; Biological Availability; Blood Pressure; Cell Line; Cyclic GMP; Cyclic Nucleotide Phosphodiesterases, Type 5; Dogs; Electric Stimulation; Erectile Dysfunction; Macaca mulatta; Male; Penis; Pyrroles; Quinolones; Rats; Rats, Sprague-Dawley; Solubility; Stereoisomerism; Structure-Activity Relationship

2005
Optimization of purine based PDE1/PDE5 inhibitors to a potent and selective PDE5 inhibitor for the treatment of male ED.
    Bioorganic & medicinal chemistry letters, 2005, May-02, Volume: 15, Issue:9

    Topics: 3',5'-Cyclic-GMP Phosphodiesterases; Animals; Cyclic Nucleotide Phosphodiesterases, Type 5; Erectile Dysfunction; Humans; Male; Models, Molecular; Molecular Structure; Phosphodiesterase I; Phosphodiesterase Inhibitors; Phosphoric Diester Hydrolases; Piperazines; Purines; Rats; Sildenafil Citrate; Structure-Activity Relationship; Sulfones; Vasodilator Agents

2005
New pyrazolo[1',5':1,6]pyrimido[4,5-d]pyridazin-4(3H)-ones as potent and selective PDE5 inhibitors.
    Bioorganic & medicinal chemistry letters, 2005, May-02, Volume: 15, Issue:9

    Topics: 3',5'-Cyclic-GMP Phosphodiesterases; Animals; Blood Platelets; Cattle; Cyclic Nucleotide Phosphodiesterases, Type 5; Cyclic Nucleotide Phosphodiesterases, Type 6; Molecular Structure; Phosphodiesterase Inhibitors; Phosphoric Diester Hydrolases; Pyrazoles; Pyridazines; Retina; Sensitivity and Specificity; Structure-Activity Relationship

2005
Identifying off-target effects and hidden phenotypes of drugs in human cells.
    Nature chemical biology, 2006, Volume: 2, Issue:6

    Topics: Bacterial Proteins; Cell Line; Cell Proliferation; Cluster Analysis; Drug Design; Drug Evaluation, Preclinical; Genetics; Humans; Luminescent Proteins; Molecular Structure; Phenotype; Recombinant Fusion Proteins; Signal Transduction; Structure-Activity Relationship

2006
In silico prediction of novel phosphodiesterase type-5 inhibitors derived from Sildenafil, Vardenafil and Tadalafil.
    Bioorganic & medicinal chemistry, 2008, Aug-15, Volume: 16, Issue:16

    Topics: Animals; Carbolines; Cyclic Nucleotide Phosphodiesterases, Type 5; Imidazoles; Mice; Models, Molecular; Phosphodiesterase 5 Inhibitors; Phosphodiesterase Inhibitors; Piperazines; Purines; Quantitative Structure-Activity Relationship; Rats; Sildenafil Citrate; Sulfones; Tadalafil; Triazines; Vardenafil Dihydrochloride

2008
Quinazolines as potent and highly selective PDE5 inhibitors as potential therapeutics for male erectile dysfunction.
    Bioorganic & medicinal chemistry letters, 2008, Dec-01, Volume: 18, Issue:23

    Topics: Combinatorial Chemistry Techniques; Erectile Dysfunction; Humans; Male; Molecular Structure; Penile Erection; Phosphodiesterase 5 Inhibitors; Phosphodiesterase Inhibitors; Quinazolines; Structure-Activity Relationship

2008
Discovery of potent, selective, and orally bioavailable PDE5 inhibitor: Methyl-4-(3-chloro-4-methoxybenzylamino)-8-(2-hydroxyethyl)-7-methoxyquinazolin-6-ylmethylcarbamate (CKD 533).
    Bioorganic & medicinal chemistry letters, 2010, Jan-01, Volume: 20, Issue:1

    Topics: Administration, Oral; Animals; Carbamates; Catalytic Domain; Computer Simulation; Cyclic Nucleotide Phosphodiesterases, Type 5; Disease Models, Animal; Enzyme Inhibitors; Erectile Dysfunction; Humans; Male; Microsomes, Liver; Phosphodiesterase 5 Inhibitors; Quinazolines; Rabbits; Rats

2010
Synthesis of quinoline derivatives: discovery of a potent and selective phosphodiesterase 5 inhibitor for the treatment of Alzheimer's disease.
    European journal of medicinal chemistry, 2013, Volume: 60

    Topics: Alzheimer Disease; Animals; Disease Models, Animal; Drug Discovery; Female; Male; Mice; Mice, Inbred C57BL; Molecular Structure; Phosphodiesterase 5 Inhibitors; Quinolines

2013
The discovery of avanafil for the treatment of erectile dysfunction: a novel pyrimidine-5-carboxamide derivative as a potent and highly selective phosphodiesterase 5 inhibitor.
    Bioorganic & medicinal chemistry letters, 2014, Dec-01, Volume: 24, Issue:23

    Topics: Animals; Erectile Dysfunction; Humans; Male; Phosphodiesterase 5 Inhibitors; Pyrimidines; Rabbits

2014
Design, Synthesis, and Biological Evaluation of First-in-Class Dual Acting Histone Deacetylases (HDACs) and Phosphodiesterase 5 (PDE5) Inhibitors for the Treatment of Alzheimer's Disease.
    Journal of medicinal chemistry, 2016, 10-13, Volume: 59, Issue:19

    Topics: Acetylation; Alzheimer Disease; Animals; Cell Line; Cells, Cultured; Cyclic AMP Response Element-Binding Protein; Cyclic Nucleotide Phosphodiesterases, Type 5; Drug Design; Histone Deacetylase Inhibitors; Histone Deacetylases; Humans; Mice; Models, Molecular; Phosphodiesterase 5 Inhibitors

2016
Design, synthesis, biological evaluation and in vivo testing of dual phosphodiesterase 5 (PDE5) and histone deacetylase 6 (HDAC6)-selective inhibitors for the treatment of Alzheimer's disease.
    European journal of medicinal chemistry, 2018, Apr-25, Volume: 150

    Topics: Alzheimer Disease; Cell Line; Cyclic Nucleotide Phosphodiesterases, Type 5; Dose-Response Relationship, Drug; Drug Design; Histone Deacetylase 6; Histone Deacetylase Inhibitors; Humans; Molecular Structure; Neuroglia; Phosphodiesterase 5 Inhibitors; Structure-Activity Relationship

2018
Optimization of Chromeno[2,3- c]pyrrol-9(2 H)-ones as Highly Potent, Selective, and Orally Bioavailable PDE5 Inhibitors: Structure-Activity Relationship, X-ray Crystal Structure, and Pharmacodynamic Effect on Pulmonary Arterial Hypertension.
    Journal of medicinal chemistry, 2018, 09-27, Volume: 61, Issue:18

    Topics: Administration, Oral; Animals; Crystallography, X-Ray; ERG1 Potassium Channel; Hypertension, Pulmonary; Microsomes, Liver; Models, Molecular; Molecular Structure; Phosphodiesterase 5 Inhibitors; Protein Conformation; Pulmonary Artery; Structure-Activity Relationship

2018
Discovery of furyl/thienyl β-carboline derivatives as potent and selective PDE5 inhibitors with excellent vasorelaxant effect.
    European journal of medicinal chemistry, 2018, Oct-05, Volume: 158

    Topics: Animals; Carbolines; Cyclic Nucleotide Phosphodiesterases, Type 5; Drug Design; Female; Humans; Male; Mesenteric Arteries; Molecular Docking Simulation; Phosphodiesterase 5 Inhibitors; Rats, Wistar; Structure-Activity Relationship; Vasodilator Agents

2018
Pharmacokinetics-Driven Optimization of 4(3 H)-Pyrimidinones as Phosphodiesterase Type 5 Inhibitors Leading to TPN171, a Clinical Candidate for the Treatment of Pulmonary Arterial Hypertension.
    Journal of medicinal chemistry, 2019, 05-23, Volume: 62, Issue:10

    Topics: Animals; Dogs; Drug Design; Female; Half-Life; Hypertension, Pulmonary; Male; Phosphodiesterase 5 Inhibitors; Pyrimidines; Rats; Rats, Inbred SHR; Rats, Sprague-Dawley; Sildenafil Citrate; Structure-Activity Relationship; Substrate Specificity

2019
Novel PDE5 inhibitors derived from rutaecarpine for the treatment of Alzheimer's disease.
    Bioorganic & medicinal chemistry letters, 2020, 05-01, Volume: 30, Issue:9

    Topics: Alzheimer Disease; Animals; Cholinergic Antagonists; Cognitive Dysfunction; Cyclic Nucleotide Phosphodiesterases, Type 5; Dose-Response Relationship, Drug; Indole Alkaloids; Mice; Models, Molecular; Molecular Structure; Morris Water Maze Test; Phosphodiesterase 5 Inhibitors; Protein Conformation; Quinazolines; Scopolamine

2020
From Celecoxib to a Novel Class of Phosphodiesterase 5 Inhibitors: Trisubstituted Pyrazolines as Novel Phosphodiesterase 5 Inhibitors with Extremely High Potency and Phosphodiesterase Isozyme Selectivity.
    Journal of medicinal chemistry, 2021, 04-22, Volume: 64, Issue:8

    Topics: Animals; Blood Proteins; Celecoxib; Cyclic Nucleotide Phosphodiesterases, Type 5; Drug Design; Female; Half-Life; Humans; Isoenzymes; Mice; Mice, Inbred C57BL; Microsomes, Liver; Phosphodiesterase 5 Inhibitors; Protein Binding; Pyrazoles; Recombinant Proteins; Stereoisomerism; Structure-Activity Relationship

2021