tacrolimus has been researched along with pipecolic-acid* in 5 studies
5 other study(ies) available for tacrolimus and pipecolic-acid
Article | Year |
---|---|
Rapid, Structure-Based Exploration of Pipecolic Acid Amides as Novel Selective Antagonists of the FK506-Binding Protein 51.
The FK506-binding protein 51 (FKBP51) is a key regulator of stress hormone receptors and an established risk factor for stress-related disorders. Drug development for FKBP51 has been impaired by the structurally similar but functionally opposing homologue FKBP52. High selectivity between FKBP51 and FKBP52 can be achieved by ligands that stabilize a recently discovered FKBP51-favoring conformation. However, drug-like parameters for these ligands remained unfavorable. In the present study, we replaced the potentially labile pipecolic ester group of previous FKBP51 ligands by various low molecular weight amides. This resulted in the first series of pipecolic acid amides, which had much lower molecular weights without affecting FKBP51 selectivity. We discovered a geminally substituted cyclopentyl amide as a preferred FKBP51-binding motif and elucidated its binding mode to provide a new lead structure for future drug optimization. Topics: Amides; Animals; Cell Line; Drug Discovery; Humans; Models, Molecular; Molecular Conformation; Molecular Weight; Neurites; Pipecolic Acids; Risk Factors; Structure-Activity Relationship; Tacrolimus Binding Proteins; X-Ray Diffraction | 2016 |
Characterization of the nocardiopsin biosynthetic gene cluster reveals similarities to and differences from the rapamycin and FK-506 pathways.
Macrolide-pipecolate natural products, such as rapamycin (1) and FK-506 (2), are renowned modulators of FK506-binding proteins (FKBPs). The nocardiopsins, from Nocardiopsis sp. CMB-M0232, are the newest members of this structural class. Here, the biosynthetic pathway for nocardiopsins A-D (4-7) is revealed by cloning, sequencing, and bioinformatic analyses of the nsn gene cluster. In vitro evaluation of recombinant NsnL revealed that this lysine cyclodeaminase catalyzes the conversion of L-lysine into the L-pipecolic acid incorporated into 4 and 5. Bioinformatic analyses supported the conjecture that a linear nocardiopsin precursor is equipped with the hydroxy group required for macrolide closure in a previously unobserved manner by employing a P450 epoxidase (NsnF) and limonene epoxide hydrolase homologue (NsnG). The nsn cluster also encodes candidates for tetrahydrofuran group biosynthesis. The nocardiopsin pathway provides opportunities for engineering of FKBP-binding metabolites and for probing new enzymology in nature's polyketide tailoring arsenal. Topics: Actinomycetales; Amino Acid Sequence; Ammonia-Lyases; Biocatalysis; Cloning, Molecular; Computational Biology; Furans; Molecular Sequence Data; Multigene Family; Pipecolic Acids; Sirolimus; Tacrolimus | 2015 |
Enhancement of FK506 production by engineering secondary pathways of Streptomyces tsukubaensis and exogenous feeding strategies.
FK506 is a clinically important macrocyclic polyketide with immunosuppressive activity produced by Streptomyces tsukubaensis. However, the low titer at which it is produced is a bottleneck to its application and use in industrial processes. We have overexpressed five potential targets associated with FK506 production (fkbO, fkbL, fkbP, fkbM, fkbD) which were identified in our previous study, with the aim to improve FK506 production. The results of the analysis showed that the constructed strains with an additional copy of each gene increased FK506 production by approximately 10-40 % compared with the wild-type strain D852. The results of the gene expression analysis indicated that each gene was upregulated. Combinatorial overexpression of the five genes resulted in a 146 % increase in the FK506 titer to 353.2 mg/L, in comparison with the titer produced by D852. To further improve the production of FK506 by the engineered strain HT-FKBOPLMD, we supplemented the medium with various nutrients, including soybean oil, lactate, succinate, shikimate, chorismate, lysine, pipecolate, isoleucine and valine. Optimization of feeding concentrations and times resulted in HT-FKBOPLMD being able to produce approximately 70 % more FK506, thereby reaching the maximal titer of 457.5 mg/L, with lower amounts of by-products (FK520 and 37,38-dihydro-FK506). These results demonstrate that the combination of the metabolically engineered secondary pathways and the exogenous feeding strategies developed here was able to be successfully applied to improve the production of industrially and clinically important compounds. Topics: Bacterial Proteins; Biotechnology; Chorismic Acid; Gene Expression Regulation, Bacterial; Genes, Bacterial; Immunosuppressive Agents; Metabolic Engineering; Pipecolic Acids; Polyketide Synthases; Secondary Metabolism; Streptomyces; Tacrolimus | 2013 |
Elucidating the substrate specificity and condensation domain activity of FkbP, the FK520 pipecolate-incorporating enzyme.
Rapamycin, FK506, and FK520 are potent immunosuppressant natural product macrocycles generated by hybrid polyketide synthase (PKS)/nonribosomal peptide synthetase (NRPS) systems in streptomycetes. An important functional element within these molecules is an l-pipecolate moiety that is incorporated into the completed polyketide chain by the action of RapP/FkbP, a four-domain NRPS that also putatively serves to cyclize the chain after amino acid insertion. Here we report the expression and purification of recombinant FkbP from the FK520 biosynthetic pathway. Using a combination of radioassays and Fourier transform mass spectrometry, we demonstrate that once FkbP has been phosphopantetheinylated in vitro, its peptidyl carrier protein domain can be successfully loaded with l-pipecolic acid and, to a lesser extent, l-proline. The first condensation domain of FkbP is shown to be active through the successful acetylation of aminoacyl-S-FkbP using the appropriately loaded terminal acyl carrier protein from the PKS array, FkbA, as the chain donor. Site-directed mutagenesis confirmed that the N-terminal condensation domain catalyzes the transfer reaction. Acetylation of prolyl-S-FkbP was more rapid and occurred to a greater extent than that of pipecolyl-S-FkbP, a trend which was also observed with alternative acyl chain donors. These observations suggest that the adenylation domain of FkbP serves as the primary selectivity filter for pipecolate incorporation. Topics: Amino Acid Sequence; Bacterial Proteins; Base Sequence; Cloning, Molecular; DNA, Bacterial; Fourier Analysis; Genes, Bacterial; Immunosuppressive Agents; Kinetics; Mass Spectrometry; Molecular Structure; Multigene Family; Mutagenesis, Site-Directed; Peptide Synthases; Pipecolic Acids; Recombinant Proteins; Sirolimus; Streptomyces; Substrate Specificity; Tacrolimus | 2005 |
Biosynthesis of the immunosuppressant immunomycin: the enzymology of pipecolate incorporation.
Immunomycin, an immunosuppressant closely related to FK 506, contains a pipecolate residue in amide linkage with an acyl group in its polyketide backbone. An enzyme activating L-pipecolic acid has been isolated from Streptomyces hygroscopicus var. ascomyceticus, which produces immunomycin. Purification results in a monomer of 170 kDa exhibiting N-terminal heterogeneity, apparently arising from proteolysis of a single species. It is a dimer under native conditions. The reaction appears to use an aminoacyl adenylate as an intermediate in the activating reaction, as do most activating enzymes involved in nonribosomal peptide synthesis. A range of pipecolate and proline analogues act as substrates in the pyrophosphate-ATP exchange resulting from the adenylation reaction. Several analogues are inhibitors of the subsequent thioesterification of the enzyme. Antibody raised to the purified enzyme was used to follow antigen during the course of fermentation. Maximal levels of antigen are found when synthesis of immunomycin is maximal. Ten of twelve immunomycin nonproducing mutants lack detectable pipecolate-activating enzyme in Western blots. From the enzymatic characteristics, substrate specificity, and immunological properties, we propose that we have isolated the enzyme responsible for activating pipecolic acid for immunomycin biosynthesis. Topics: Adenosine Triphosphate; Anti-Bacterial Agents; Bacterial Proteins; Blotting, Western; Heterocyclic Compounds; Immunosuppressive Agents; Molecular Weight; Peptide Synthases; Pipecolic Acids; Streptomyces; Substrate Specificity; Sulfides; Tacrolimus | 1991 |