tacrolimus and 4-hydroxy-2-nonenal

tacrolimus has been researched along with 4-hydroxy-2-nonenal* in 2 studies

Other Studies

2 other study(ies) available for tacrolimus and 4-hydroxy-2-nonenal

ArticleYear
FK506 ameliorates oxidative damage and protects rat brain following transient focal cerebral ischemia.
    Neurological research, 2011, Volume: 33, Issue:8

    The immunosuppressant FK506 (tacrolimus) is neuroprotective in experimental models of cerebral ischemia. However, the precise mechanisms underlying this neuroprotection remain unknown. In the present study, we hypothesized that FK506 treatment could protect rat brain from oxidative injuries through antioxidative and anti-inflammatory pathways after ischemia-reperfusion injury.. Sprague-Dawley rats were subjected to middle cerebral artery occlusion for 120 minutes, followed by reperfusion. Animals received a single injection of FK506 (0·3 mg/kg) or vehicle intravenously at 30 minutes after ischemic induction. Infarct volume and neurological performance were evaluated at 24 hours after reperfusion. Immunohistochemical analysis for 4-hydroxy-2-nonenal (4-HNE), 8-hydroxy-deoxyguanosine (8-OHdG), ionized calcium-binding adapter molecule 1 (Iba-1), and tumor necrosis factor-alpha (TNF-alpha) were conducted at 24 hours after reperfusion.. FK506 significantly reduced infarct volume (61·7%; P=0·01) and improved neurological deficit scores (P<0·05) 24 hours after reperfusion compared to vehicle. In FK506-treated rats, accumulation of 4-HNE (P<0·01) and 8-OHdG (P<0·01) was significantly suppressed in the cerebral cortex 24 hours after reperfusion. In addition, FK506 markedly reduced microglial activation (P<0·01) and TNF-alpha expression (P<0·01).. These results demonstrate that FK506 may have antioxidant as well as anti-inflammatory effects and reduces ischemic damage following cerebral infarction.

    Topics: 8-Hydroxy-2'-Deoxyguanosine; Aldehydes; Animals; Antioxidants; Brain; Calcium-Binding Proteins; Cerebral Infarction; Cerebrovascular Circulation; Deoxyguanosine; Disease Models, Animal; Humans; Infarction, Middle Cerebral Artery; Ischemic Attack, Transient; Magnetic Resonance Imaging; Male; Microfilament Proteins; Neuroprotective Agents; Oxidative Stress; Rats; Rats, Sprague-Dawley; Tacrolimus; Tumor Necrosis Factor-alpha

2011
Reduction of ciclosporin and tacrolimus nephrotoxicity by plant polyphenols.
    The Journal of pharmacy and pharmacology, 2006, Volume: 58, Issue:11

    The immunosuppressants ciclosporin (cyclosporin A, CsA) and tacrolimus can cause severe nephrotoxicity. Since CsA increases free radical formation, this study investigated whether an extract from Camellia sinensis, which contains several polyphenolic free radical scavengers, could prevent nephrotoxicity caused by CsA and tacrolimus. Rats were fed powdered diet containing polyphenolic extract (0-0.1%) starting 3 days before CsA or tacrolimus. Free radicals were trapped with alpha-(4-pyridyl-1-oxide)-N-tert-butylnitrone (POBN) and measured using an electron spin resonance spectrometer. Both CsA and tacrolimus decreased glomerular filtration rates (GFR) and caused tubular atrophy, vacuolization and calcification and arteriolar hyalinosis, effects that were blunted by treatment with dietary polyphenols. Moreover, CsA and tacrolimus increased POBN/radical adducts in urine nearly 3.5 fold. Hydroxyl radicals attack dimethyl sulfoxide (DMSO) to produce a methyl radical fragment. Administration of CsA or tacrolimus with (12)C-DMSO produced a 6-line spectrum, while CsA or tacrolimus given with (13)C-DMSO produced a 12-line ESR spectrum, confirming formation of hydroxyl radicals. 4-Hydroxynonenal (4-HNE), a product of lipid peroxidation, accumulated in proximal and distal tubules after CsA or tacrolimus treatment. ESR changes and 4-HNE formation were largely blocked by polyphenols. Taken together, these results demonstrate that both CsA and tacrolimus stimulate free radical production in the kidney, most likely in tubular cells, and that polyphenols minimize nephrotoxicity by scavenging free radicals.

    Topics: Aldehydes; Animals; Camellia sinensis; Chromatography, High Pressure Liquid; Cyclosporine; Flavonoids; Free Radicals; Glomerular Filtration Rate; Glycerol; Immunohistochemistry; Immunosuppressive Agents; Kidney; Kidney Diseases; Male; Olive Oil; Phenols; Phytotherapy; Plant Oils; Polyphenols; Rats; Rats, Sprague-Dawley; Tacrolimus

2006