tacrine has been researched along with sr141716 in 4 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 0 (0.00) | 29.6817 |
2010's | 4 (100.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Cantin, LD; Chen, H; Kenna, JG; Noeske, T; Stahl, S; Walker, CL; Warner, DJ | 1 |
Afshari, CA; Chen, Y; Dunn, RT; Hamadeh, HK; Kalanzi, J; Kalyanaraman, N; Morgan, RE; van Staden, CJ | 1 |
Bartolini, M; Decker, M; Dolles, D; Falkeis, C; Gmeiner, P; Gunesch, S; Hoffmann, M; Hübner, H; Maitra, R; Marinelli, O; Maurice, T; Monti, B; Nabissi, M; Naldi, M; Petralla, S; Poeta, E; Scheiner, M; Vieth, M | 1 |
Armentero, MT; Baqi, Y; Bonaventura, J; Canela, EI; Casadó, V; Cortés, A; Costa, G; Farré, D; Franco, R; Lanciego, JL; Lluís, C; Mallol, J; Martínez-Pinilla, E; McCormick, P; Müller, CE; Pinna, A; Sánchez, M; Simola, N | 1 |
4 other study(ies) available for tacrine and sr141716
Article | Year |
---|---|
Mitigating the inhibition of human bile salt export pump by drugs: opportunities provided by physicochemical property modulation, in silico modeling, and structural modification.
Topics: Animals; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Bile Acids and Salts; Cell Line; Chemical and Drug Induced Liver Injury; Humans; Quantitative Structure-Activity Relationship | 2012 |
A multifactorial approach to hepatobiliary transporter assessment enables improved therapeutic compound development.
Topics: Animals; ATP Binding Cassette Transporter, Subfamily B; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Biological Transport; Chemical and Drug Induced Liver Injury; Cluster Analysis; Drug-Related Side Effects and Adverse Reactions; Humans; Liver; Male; Multidrug Resistance-Associated Proteins; Pharmacokinetics; Rats; Rats, Sprague-Dawley; Recombinant Proteins; Risk Assessment; Risk Factors; Toxicity Tests | 2013 |
Dual-Acting Cholinesterase-Human Cannabinoid Receptor 2 Ligands Show Pronounced Neuroprotection in Vitro and Overadditive and Disease-Modifying Neuroprotective Effects in Vivo.
Topics: Animals; Cholinesterases; Humans; Ligands; Mice; Neuroprotective Agents; Receptor, Cannabinoid, CB2 | 2019 |
L-DOPA disrupts adenosine A(2A)-cannabinoid CB(1)-dopamine D(2) receptor heteromer cross-talk in the striatum of hemiparkinsonian rats: biochemical and behavioral studies.
Topics: Adenosine A2 Receptor Antagonists; Animals; Antiparkinson Agents; Cannabinoid Receptor Antagonists; Cholinesterase Inhibitors; Corpus Striatum; Disease Models, Animal; Dopamine Agents; Dose-Response Relationship, Drug; Drug Interactions; Functional Laterality; Levodopa; Male; Oxidopamine; Parkinsonian Disorders; Piperidines; Protein Binding; Pyrazoles; Rats; Rats, Sprague-Dawley; Receptor Cross-Talk; Rimonabant; Tacrine; Time Factors; Tremor | 2014 |