tacrine has been researched along with profenamine in 7 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 2 (28.57) | 29.6817 |
2010's | 5 (71.43) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Campiani, G; Catalanotti, B; Chiasserini, L; Fattorusso, C; Gaeta, A; McKissic, D; Novellino, E; Pellerano, C; Savini, L; Saxena, A | 1 |
Agnusdei, M; Belinskaya, T; Butini, S; Campiani, G; Catalanotti, B; Fattorusso, C; Fedorko, JM; Gaeta, A; Gemma, S; Greig, NH; Holloway, HW; Nacci, V; Novellino, E; Persico, M; Savini, L; Saxena, A | 1 |
Boido, V; Carotti, A; Catto, M; Giangreco, I; Nicolotti, O; Novelli, F; Pisani, L; Sparatore, A; Sparatore, F; Tasso, B; Tonelli, M | 1 |
Cantin, LD; Chen, H; Kenna, JG; Noeske, T; Stahl, S; Walker, CL; Warner, DJ | 1 |
Brus, B; Colletier, JP; Coquelle, N; Gobec, S; Kos, J; Košak, U; Pišlar, A; Stojan, J; Turk, S | 1 |
Chen, EC; Chien, HC; Giacomini, KM; Huang, Y; Khuri, N; Liang, X; Sali, A; Stecula, A; Yee, SW | 1 |
Williams, A; Zhan, CG; Zhou, S | 1 |
7 other study(ies) available for tacrine and profenamine
Article | Year |
---|---|
Specific targeting of acetylcholinesterase and butyrylcholinesterase recognition sites. Rational design of novel, selective, and highly potent cholinesterase inhibitors.
Topics: Acetylcholinesterase; Binding Sites; Butyrylcholinesterase; Cholinesterase Inhibitors; Drug Design; Ligands; Models, Molecular; Structure-Activity Relationship; Tacrine | 2003 |
Development of molecular probes for the identification of extra interaction sites in the mid-gorge and peripheral sites of butyrylcholinesterase (BuChE). Rational design of novel, selective, and highly potent BuChE inhibitors.
Topics: Acetylcholinesterase; Acridines; Binding Sites; Butyrylcholinesterase; Cholinesterase Inhibitors; Drug Design; Humans; In Vitro Techniques; Ligands; Models, Molecular; Molecular Probes; Structure-Activity Relationship | 2005 |
Quinolizidinyl derivatives of bi- and tricyclic systems as potent inhibitors of acetyl- and butyrylcholinesterase with potential in Alzheimer's disease.
Topics: Acetylcholinesterase; Alzheimer Disease; Animals; Butyrylcholinesterase; Cattle; Cholinesterase Inhibitors; Crystallography, X-Ray; Dose-Response Relationship, Drug; Erythrocytes; Models, Molecular; Molecular Structure; Quinolizidines; Stereoisomerism; Structure-Activity Relationship | 2011 |
Mitigating the inhibition of human bile salt export pump by drugs: opportunities provided by physicochemical property modulation, in silico modeling, and structural modification.
Topics: Animals; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Bile Acids and Salts; Cell Line; Chemical and Drug Induced Liver Injury; Humans; Quantitative Structure-Activity Relationship | 2012 |
Discovery, biological evaluation, and crystal structure of a novel nanomolar selective butyrylcholinesterase inhibitor.
Topics: Amyloid beta-Peptides; Animals; Butyrylcholinesterase; Cell Line, Tumor; Cholinesterase Inhibitors; Chromatography, High Pressure Liquid; Crystallization; Drug Discovery; Humans; Mice; Molecular Docking Simulation; Peptide Fragments; Protein Aggregates; Stereoisomerism | 2014 |
Discovery of Competitive and Noncompetitive Ligands of the Organic Cation Transporter 1 (OCT1; SLC22A1).
Topics: Drug Discovery; HEK293 Cells; Humans; Ligands; Molecular Docking Simulation; Organic Cation Transporter 1; Small Molecule Libraries | 2017 |
Discovery of potent and selective butyrylcholinesterase inhibitors through the use of pharmacophore-based screening.
Topics: Alzheimer Disease; Cholinesterase Inhibitors; Humans; Molecular Structure; Structure-Activity Relationship | 2019 |