tacrine has been researched along with corticosterone in 24 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 1 (4.17) | 18.7374 |
1990's | 2 (8.33) | 18.2507 |
2000's | 4 (16.67) | 29.6817 |
2010's | 15 (62.50) | 24.3611 |
2020's | 2 (8.33) | 2.80 |
Authors | Studies |
---|---|
Ahman, M; Holmén, AG; Wan, H | 1 |
Andrisano, V; Barril, X; Bartolini, M; Carreiras, Mdo C; de los Ríos, C; García, AG; Huertas, O; León, R; López, B; López, MG; Luque, FJ; Marco-Contelles, J; Rodríguez-Franco, MI; Samadi, A; Villarroya, M | 1 |
Arce, MP; Conde, S; García, AG; González-Muñoz, GC; López, B; López, MG; Pérez, C; Rodríguez-Franco, MI; Villarroya, M | 1 |
Arce, MP; Conde, S; del Barrio, L; Egea, J; García, AG; González-Muñoz, GC; León, R; López, B; López, MG; Martín-de-Saavedra, MD; Pérez, C; Rodríguez-Franco, MI; Romero, A; Villarroya, M | 1 |
Andrisano, V; Bartolini, M; Clos, MV; Di Pietro, O; Juárez-Jiménez, J; Lavilla, R; Luque, FJ; Muñoz-Torrero, D; Pérez, B; Ramón, R; Viayna, E; Vicente-García, E | 1 |
Kong, LY; Lan, JS; Li, SY; Pan, LF; Wang, XB; Xie, SS | 1 |
Bajda, M; Brus, B; Gobec, S; Guzior, N; Malawska, B; Rakoczy, J | 1 |
Jiang, N; Kong, LY; Lan, JS; Li, ZR; Wang, KD; Wang, X; Xie, SS; Yu, W | 1 |
Bajda, M; Brus, B; Czerwińska, P; Filipek, B; Gobec, S; Malawska, B; Sałat, K; Więckowska, A; Więckowski, K | 1 |
Jiang, N; Kong, LY; Lan, JS; Li, F; Wang, J; Wang, X; Wang, ZM; Wu, JJ; Xie, SS | 1 |
Kong, LY; Li, F; Li, XM; Wang, J; Wang, XB; Wang, ZM; Wu, JJ | 1 |
Cai, P; Kong, LY; Liu, QH; Wang, XB; Wang, ZM; Wu, JJ; Xu, DQ; Yang, XL | 1 |
Bienkowski, P; Bucki, A; Gobec, S; Godyń, J; Głuch-Lutwin, M; Kazek, G; Knez, D; Kołaczkowski, M; Malawska, B; Marcinkowska, M; Mierzejewski, P; Sienkiewicz-Jarosz, H; Siwek, A; Wichur, T; Więckowska, A; Więckowski, K; Zaręba, P | 1 |
Brazzolotto, X; Brus, B; Colletier, JP; Coquelle, N; Gobec, S; Knez, D; Kos, J; Košak, U; Nachon, F; Pišlar, A | 1 |
Guo, QL; Huang, SL; Huang, ZS; Li, D; Liu, ZQ; Ou, TM; Tan, JH; Wang, HG; Wang, N; Wu, JQ; Xia, CL | 1 |
Huang, Q; Jiang, N; Li, Q; Liang, N; Liu, J; Xie, SS | 1 |
Gong, Q; Li, J; Li, X; Liu, W; Mao, F; Qiu, X; Wang, H; Wang, W; Xu, Y; Zhang, H; Zhang, J; Zhu, J | 1 |
Alcaro, S; Bagetta, D; Borges, F; Cagide, F; Oliveira, PJ; Ortuso, F; Pérez, C; Reis, J; Rodríguez-Franco, MI; Teixeira, J; Uriarte, E; Valencia, ME | 1 |
Boulouard, M; Claeysen, S; Corvaisier, S; Dallemagne, P; Davis, A; Freret, T; Hatat, B; Lalut, J; Lecoutey, C; Rochais, C; Since, M; Sopková-de Oliveira Santos, J; Toublet, FX | 1 |
Chen, L; Lei, Z; Sun, J; Sun, X; Wang, Y; Yue, S | 1 |
Bentley, GA; Wong, CL | 1 |
Bagetta, G; Corasaniti, MT; Finazzi-Agrò, A; Melino, G; Nisticò, G; Paoletti, AM | 1 |
Earley, B; Leonard, BE; Song, C | 1 |
Wang, RH; Weinstock, M | 1 |
24 other study(ies) available for tacrine and corticosterone
Article | Year |
---|---|
Relationship between brain tissue partitioning and microemulsion retention factors of CNS drugs.
Topics: Brain; Central Nervous System; Chromatography, Liquid; Emulsions; Mass Spectrometry | 2009 |
Tacripyrines, the first tacrine-dihydropyridine hybrids, as multitarget-directed ligands for the treatment of Alzheimer's disease.
Topics: Acetylcholinesterase; Alzheimer Disease; Amyloid beta-Peptides; Blood-Brain Barrier; Butyrylcholinesterase; Calcium; Calcium Channel Blockers; Catalytic Domain; Cell Death; Cell Line, Tumor; Cholinesterase Inhibitors; Cytosol; Dihydropyridines; Humans; Hydrogen Peroxide; Kinetics; Ligands; Models, Molecular; Peptide Fragments; Permeability; Tacrine | 2009 |
Neuroprotective and cholinergic properties of multifunctional glutamic acid derivatives for the treatment of Alzheimer's disease.
Topics: Acetylcholinesterase; Alzheimer Disease; Amyloid beta-Peptides; Animals; Blood-Brain Barrier; Catalytic Domain; Cattle; Cell Death; Cell Line, Tumor; Cell Survival; Cholinergic Agents; Cholinesterase Inhibitors; Esters; Glutamic Acid; Humans; Hydrophobic and Hydrophilic Interactions; Neuroprotective Agents; Permeability; Piperidines; Protein Binding | 2009 |
N-acylaminophenothiazines: neuroprotective agents displaying multifunctional activities for a potential treatment of Alzheimer's disease.
Topics: Alzheimer Disease; Amyloid beta-Peptides; Antineoplastic Agents; Butyrylcholinesterase; Calcium; Cell Death; Cell Survival; Cholinesterase Inhibitors; Dose-Response Relationship, Drug; Humans; Molecular Structure; Okadaic Acid; Peptide Fragments; Phenothiazines; Stereoisomerism; Structure-Activity Relationship; Tumor Cells, Cultured | 2011 |
1,2,3,4-Tetrahydrobenzo[h][1,6]naphthyridines as a new family of potent peripheral-to-midgorge-site inhibitors of acetylcholinesterase: synthesis, pharmacological evaluation and mechanistic studies.
Topics: Acetylcholinesterase; Animals; Binding Sites; Blood-Brain Barrier; Butyrylcholinesterase; Cholinesterase Inhibitors; Drug Design; Electrophorus; Humans; Membranes, Artificial; Models, Biological; Molecular Docking Simulation; Molecular Dynamics Simulation; Molecular Structure; Naphthyridines; Permeability; Protein Binding | 2014 |
Design, synthesis and evaluation of novel tacrine-(β-carboline) hybrids as multifunctional agents for the treatment of Alzheimer's disease.
Topics: Acetylcholinesterase; Alzheimer Disease; Amyloid beta-Peptides; Animals; Antioxidants; Blood-Brain Barrier; Butyrylcholinesterase; Carbolines; Cell Line; Chelating Agents; Cholinesterase Inhibitors; Drug Design; Electrophorus; Horses; Humans; Molecular Docking Simulation; Protein Aggregation, Pathological; Tacrine | 2014 |
Isoindoline-1,3-dione derivatives targeting cholinesterases: design, synthesis and biological evaluation of potential anti-Alzheimer's agents.
Topics: Alzheimer Disease; Animals; Cholinesterase Inhibitors; Cholinesterases; Drug Delivery Systems; Drug Design; Drug Evaluation, Preclinical; Horses; Humans; Indoles; Protein Structure, Secondary | 2015 |
Multi-target tacrine-coumarin hybrids: cholinesterase and monoamine oxidase B inhibition properties against Alzheimer's disease.
Topics: Acetylcholinesterase; Alzheimer Disease; Benzopyrans; Blood-Brain Barrier; Brain; Cell Survival; Cells, Cultured; Cholinesterase Inhibitors; Coumarins; Drug Design; Erythrocytes; Humans; Kinetics; Models, Molecular; Molecular Docking Simulation; Monoamine Oxidase; Monoamine Oxidase Inhibitors; Neuroblastoma; Piperazines; Tacrine | 2015 |
Synthesis of new N-benzylpiperidine derivatives as cholinesterase inhibitors with β-amyloid anti-aggregation properties and beneficial effects on memory in vivo.
Topics: Acetylcholinesterase; Alzheimer Disease; Amnesia; Amyloid beta-Peptides; Animals; Blood-Brain Barrier; Butyrylcholinesterase; Cholinesterase Inhibitors; Disease Models, Animal; Donepezil; Humans; Indans; Indoles; Male; Memory; Mice; Models, Molecular; Neuroprotective Agents; Phthalimides; Piperidines; Protein Aggregates; Scopolamine; Structure-Activity Relationship | 2015 |
Design, synthesis and biological evaluation of novel donepezil-coumarin hybrids as multi-target agents for the treatment of Alzheimer's disease.
Topics: Alzheimer Disease; Animals; Butyrylcholinesterase; Cell Line, Tumor; Cholinesterase Inhibitors; Cholinesterases; Coumarins; Donepezil; Dose-Response Relationship, Drug; Drug Design; Eels; Humans; Indans; Models, Molecular; Molecular Structure; Molecular Targeted Therapy; Piperidines; Structure-Activity Relationship | 2016 |
Synthesis and evaluation of multi-target-directed ligands for the treatment of Alzheimer's disease based on the fusion of donepezil and melatonin.
Topics: Acetylcholinesterase; Alzheimer Disease; Amyloid beta-Peptides; Animals; Antioxidants; Blood-Brain Barrier; Butyrylcholinesterase; Catalytic Domain; Cell Line, Tumor; Chelating Agents; Cholinesterase Inhibitors; Donepezil; Electrophorus; Horses; Humans; Indans; Indoles; Iron; Kinetics; Melatonin; Molecular Docking Simulation; Peptide Fragments; Piperidines; Protein Multimerization; Rats; Zinc | 2016 |
Rational modification of donepezil as multifunctional acetylcholinesterase inhibitors for the treatment of Alzheimer's disease.
Topics: Acetylcholinesterase; Alzheimer Disease; Amyloid beta-Peptides; Animals; Blood-Brain Barrier; Cell Survival; Cholinesterase Inhibitors; Copper; Donepezil; Drug Design; Humans; Indans; Kinetics; Liver; Mice; Models, Molecular; Peptide Fragments; Piperidines; Protein Aggregates; Protein Conformation | 2016 |
Novel multi-target-directed ligands for Alzheimer's disease: Combining cholinesterase inhibitors and 5-HT
Topics: Acetylcholinesterase; Alzheimer Disease; Animals; Blood-Brain Barrier; Butyrylcholinesterase; Catalytic Domain; Chemistry Techniques, Synthetic; Cholinesterase Inhibitors; Drug Design; Humans; Kinetics; Ligands; Male; Models, Molecular; Molecular Targeted Therapy; Protein Conformation; Rats; Rats, Wistar; Receptors, Serotonin | 2016 |
N-Propargylpiperidines with naphthalene-2-carboxamide or naphthalene-2-sulfonamide moieties: Potential multifunctional anti-Alzheimer's agents.
Topics: Alzheimer Disease; Amyloid beta-Peptides; Butyrylcholinesterase; Cell Death; Cell Line; Cholinesterase Inhibitors; Dose-Response Relationship, Drug; Humans; Molecular Structure; Monoamine Oxidase; Monoamine Oxidase Inhibitors; Naphthalenes; Peptide Fragments; Piperidines; Structure-Activity Relationship; Sulfonamides | 2017 |
Design, synthesis and evaluation of 2-arylethenyl-N-methylquinolinium derivatives as effective multifunctional agents for Alzheimer's disease treatment.
Topics: Alzheimer Disease; Amyloid beta-Peptides; Antioxidants; Blood-Brain Barrier; Cell Death; Cell Line; Cholinesterase Inhibitors; Drug Design; Glutathione; Humans; Quinolines; Reactive Oxygen Species | 2017 |
Design, synthesis and biological evaluation of new coumarin-dithiocarbamate hybrids as multifunctional agents for the treatment of Alzheimer's disease.
Topics: Acetylcholinesterase; Alzheimer Disease; Amyloid beta-Peptides; Animals; Blood-Brain Barrier; Cell Line, Tumor; Cholinesterase Inhibitors; Coumarins; Dose-Response Relationship, Drug; Drug Design; Humans; Kinetics; Male; Mice; Mice, Inbred Strains; Models, Molecular; Molecular Structure; Peptide Fragments; Protein Aggregates; Range of Motion, Articular; Structure-Activity Relationship; Thiocarbamates | 2018 |
Design, synthesis and evaluation of vilazodone-tacrine hybrids as multitarget-directed ligands against depression with cognitive impairment.
Topics: Acetylcholinesterase; Alzheimer Disease; Animals; Blood-Brain Barrier; Butyrylcholinesterase; Cholinesterase Inhibitors; Depression; Drug Design; Ligands; Mice; Permeability; Serotonin 5-HT1 Receptor Agonists; Structure-Activity Relationship; Tacrine; Vilazodone Hydrochloride | 2018 |
Multi-target-directed ligands for Alzheimer's disease: Discovery of chromone-based monoamine oxidase/cholinesterase inhibitors.
Topics: Alzheimer Disease; Blood-Brain Barrier; Cholinesterase Inhibitors; Cholinesterases; Chromones; Drug Design; Hep G2 Cells; Humans; Ligands; Molecular Docking Simulation; Molecular Targeted Therapy; Monoamine Oxidase; Monoamine Oxidase Inhibitors | 2018 |
Pleiotropic prodrugs: Design of a dual butyrylcholinesterase inhibitor and 5-HT
Topics: Alzheimer Disease; Animals; Butyrylcholinesterase; Cholinesterase Inhibitors; Dose-Response Relationship, Drug; Drug Design; Electrophorus; Humans; Locomotion; Male; Mice; Models, Molecular; Molecular Structure; Prodrugs; Receptors, Serotonin; Structure-Activity Relationship | 2021 |
Development of 5-hydroxyl-1-azabenzanthrone derivatives as dual binding site and selective acetylcholinesterase inhibitors.
Topics: Acetylcholinesterase; Alzheimer Disease; Amyloid beta-Peptides; Animals; Antioxidants; Binding Sites; Blood-Brain Barrier; Cholinesterase Inhibitors; Drug Design; Rats | 2022 |
The effect of stress and adrenalectomy on morphine analgesia and naloxone potency in mice.
Topics: Adrenal Medulla; Adrenalectomy; Analgesia; Animals; Atropine; Corticosterone; Male; Mice; Morphine; Motor Activity; Muscle Contraction; Naloxone; Restraint, Physical; Stress, Physiological; Tacrine | 1979 |
Lithium and tacrine increase the expression of nitric oxide synthase mRNA in the hippocampus of rat.
Topics: Amino Acid Oxidoreductases; Animals; Arginine; Atropine; Cerebral Ventricles; Corticosterone; DNA Probes; Gene Expression; Hippocampus; Injections, Intraventricular; Kinetics; Lithium Chloride; NG-Nitroarginine Methyl Ester; Nitric Oxide Synthase; Rats; RNA, Messenger; Tacrine | 1993 |
Effect of chronic treatment with piracetam and tacrine on some changes caused by thymectomy in the rat brain.
Topics: Animals; Avoidance Learning; Behavior, Animal; Brain; Corticosterone; Leukocyte Count; Male; Maze Learning; Neurotransmitter Agents; Nootropic Agents; Piracetam; Rats; Rats, Sprague-Dawley; Tacrine; Thymectomy; Thymus Gland | 1997 |
Steroid hormones mediate sex difference in brain levels of tacrine and its hypothermic effect in the rat.
Topics: Adrenalectomy; Animals; Anti-Inflammatory Agents; Body Temperature Regulation; Brain; Cholinesterase Inhibitors; Cholinesterases; Corticosterone; Dose-Response Relationship, Drug; Female; Hypothermia; Injections, Intramuscular; Male; Orchiectomy; Ovariectomy; Rats; Rats, Sprague-Dawley; Sex Characteristics; Tacrine; Testosterone | 2001 |