t0901317 has been researched along with epigallocatechin-gallate* in 1 studies
1 other study(ies) available for t0901317 and epigallocatechin-gallate
Article | Year |
---|---|
Divergent effect of liver X receptor agonists on prostate-specific antigen expression is dependent on androgen receptor in prostate carcinoma cells.
Liver X receptor (LXR) isoforms, LXRα and LXRβ, have similar protein structures and ligands, but diverse tissue distribution. We used two synthetic, non-steroidal LXR agonists, T0901317 and GW3965, to investigate the effects of LXR agonist modulation on prostate specific antigen (PSA) via the expressions of androgen receptors (AR), LXRα, or LXRβ, in prostate carcinoma cells.. LXRα- or LXRβ-knockdown cells were transduced with specific shRNA lentiviral particles. LXRα and LXRβ expressions were assessed by immunoblotting and RT-qPCR assays. Cell proliferation was determined by (3) H-thymidine incorporation assays. The effects of LXR agonists and epigallocatechin gallate (EGCG) on PSA expression were determined by ELISA, immunoblotting, or transient gene expression assays.. Treatment with either T0901317 or GW3965 significantly attenuated cell proliferation of LNCaP cells. T0901317 treatment suppressed PSA expression while GW3965 treatment enhanced PSA expression. The increase of PSA promoter activity by GW3965 was dependent on the expression of AR. Either LXRα- or LXRβ-knockdown did not affect the activation of androgen on PSA gene expression. However, as compared with mock knockdown-LNCaP cells, the LXRα-knockdown but not the LXRβ-knockdown attenuated the effects of T0901317 and GW3965 on PSA expressions. The effect of GW3965 on PSA expression was blocked by the addition of EGCG.. Our results indicate that T0901317 and GW3965 have divergent effects on PSA expressions. The effects of LXR agonists on PSA expression are LXRα-dependent and AR-dependent. EGCG blocks the inducing effect of GW3965 on PSA expression. Topics: Benzoates; Benzylamines; Catechin; Cell Line, Tumor; Cell Proliferation; Humans; Hydrocarbons, Fluorinated; Liver X Receptors; Male; Orphan Nuclear Receptors; Prostate-Specific Antigen; Prostatic Neoplasms; Receptors, Androgen; Sulfonamides | 2015 |