suvorexant and almorexant

suvorexant has been researched along with almorexant* in 3 studies

Reviews

3 review(s) available for suvorexant and almorexant

ArticleYear
Dual orexin receptor antagonists - promising agents in the treatment of sleep disorders.
    The international journal of neuropsychopharmacology, 2014, Volume: 17, Issue:1

    Insomnia is a serious medical and social problem, its prevalence in the general population ranges from 9 to 35% depending on the country and assessment method. Often, patients are subject to inappropriate and therefore dangerous pharmacotherapies that include prolonged administration of hypnotic drugs, benzodiazepines and other GABAA receptor modulators. This usually does not lead to a satisfactory improvement in patients' clinical states and may cause lifelong drug dependence. Brain state transitions require the coordinated activity of numerous neuronal pathways and brain structures. It is thought that orexin-expressing neurons play a crucial role in this process. Due to their interaction with the sleep-wake-regulating neuronal population, they can activate vigilance-promoting regions and prevent unwanted sleep intrusions. Understanding the multiple orexin modulatory effects is crucial in the context of pathogenesis of insomnia and should lead to the development of novel treatments. An important step in this process was the synthesis of dual antagonists of orexin receptors. Crucially, these drugs, as opposed to benzodiazepines, do not change the sleep architecture and have limited side-effects. This new pharmacological approach might be the most appropriate to treat insomnia.

    Topics: Acetamides; Animals; Azepines; Benzofurans; Humans; Isoquinolines; Models, Biological; Orexin Receptor Antagonists; Orexin Receptors; Piperidines; Pyrimidines; Sleep; Sleep Initiation and Maintenance Disorders; Thiazoles; Triazoles; Wakefulness

2014
Orexin in sleep, addiction and more: is the perfect insomnia drug at hand?
    Neuropeptides, 2013, Volume: 47, Issue:6

    Orexins A and B (hypocretins 1 and 2) and their two receptors (OX1R and OX2R) were discovered in 1998 by two different groups. Orexin A and B are derived from the differential processing of a common precursor, the prepro-orexin peptide. The neuropeptides are expressed in a few thousand cells located in the lateral hypothalamus (LH), but their projections and receptor distribution are widespread throughout the brain. Remarkably, prepro peptide and double (OX1R/OX2R) receptor knock out (KO) mice reproduce a sleep phenotype known in humans and dogs as narcolepsy/cataplexy. In humans, this disease is characterized by the absence of orexin producing cells in the LH, and severely depleted levels of orexin the cerebrospinal fluid. Null mutation of the individual OX1R or OX2R in mice substantially ameliorates the narcolepsy/cataplexy phenotype compared to the OX1R/OX2R KO, and highlights specific roles of the individual receptors in sleep architecture, the OX1R KO demonstrating an a attenuated sleep phenotype relative to the OX2R KO. It has therefore been suggested that orexin is a master regulator of the sleep-wake cycle, with high activity of the LH orexin cells during wake and almost none during sleep. Less than 10years later, the first orexin antagonist, almorexant, a dual orexin receptor antagonist (DORA), was reported to be effective in inducing sleep in volunteers and insomnia patients. Although development was stopped for almorexant and for Glaxo's DORA SB-649868, no less than 4 orexin receptor antagonists have reached phase II for insomnia, including Filorexant (MK-6096) and Suvorexant (MK-4305) from Merck. Suvorexant has since progressed to Phase III and dossier submission to the FDA. These four compounds are reported as DORAs, however, they equilibrate very slowly at one and/or the other orexin receptor, and thus at equilibrium may show more or less selectivity for OX1R or OX2R. The appropriate balance of antagonism of the two receptors for sleep is a point of debate, although in rodent models OX2R antagonism alone appears sufficient to induce sleep, whereas OX1R antagonism is largely devoid of this effect. Orexin is involved in a number of other functions including reward and feeding, where OX1R (possibly OX2R) antagonists display anti-addictive properties in rodent models of alcohol, smoking, and drug self-administration. However, despite early findings in feeding and appetite control, orexin receptor antagonists have not produced the anticipated eff

    Topics: Acetamides; Animals; Azepines; Behavior, Addictive; Benzofurans; Feeding Behavior; Humans; Intracellular Signaling Peptides and Proteins; Isoquinolines; Mice; Neuropeptides; Orexin Receptor Antagonists; Orexin Receptors; Orexins; Piperidines; Pyrimidines; Rats; Reward; Sleep; Sleep Initiation and Maintenance Disorders; Thiazoles; Triazoles

2013
Orexin receptor antagonists: a new concept in CNS disorders?
    ChemMedChem, 2010, Aug-02, Volume: 5, Issue:8

    Topics: Acetamides; Azepines; Central Nervous System Diseases; Humans; Intracellular Signaling Peptides and Proteins; Isoquinolines; Neuropeptides; Orexin Receptors; Orexins; Patents as Topic; Receptors, G-Protein-Coupled; Receptors, Neuropeptide; Signal Transduction; Triazoles

2010