Page last updated: 2024-08-16

sumatriptan and bupropion

sumatriptan has been researched along with bupropion in 8 studies

Research

Studies (8)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's3 (37.50)29.6817
2010's5 (62.50)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Alvarez-Pedraglio, A; Colmenarejo, G; Lavandera, JL1
Benz, RD; Contrera, JF; Kruhlak, NL; Matthews, EJ; Weaver, JL1
Ahman, M; Holmén, AG; Wan, H1
Glen, RC; Lowe, R; Mitchell, JB1
Alelyunas, YW; Bui, K; Empfield, JR; McCarthy, D; Pelosi-Kilby, L; Shen, C; Spreen, RC1
Annand, R; Gozalbes, R; Jacewicz, M; Pineda-Lucena, A; Tsaioun, K1
Bellman, K; Knegtel, RM; Settimo, L1
Chen, M; Hu, C; Suzuki, A; Thakkar, S; Tong, W; Yu, K1

Reviews

1 review(s) available for sumatriptan and bupropion

ArticleYear
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
    Drug discovery today, 2016, Volume: 21, Issue:4

    Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk

2016

Other Studies

7 other study(ies) available for sumatriptan and bupropion

ArticleYear
Cheminformatic models to predict binding affinities to human serum albumin.
    Journal of medicinal chemistry, 2001, Dec-06, Volume: 44, Issue:25

    Topics: Adrenergic beta-Antagonists; Antidepressive Agents, Tricyclic; Chromatography, Affinity; Cyclooxygenase Inhibitors; Databases, Factual; Humans; Hydrophobic and Hydrophilic Interactions; Penicillins; Pharmaceutical Preparations; Protein Binding; Quantitative Structure-Activity Relationship; Reproducibility of Results; Serum Albumin; Steroids

2001
Assessment of the health effects of chemicals in humans: II. Construction of an adverse effects database for QSAR modeling.
    Current drug discovery technologies, 2004, Volume: 1, Issue:4

    Topics: Adverse Drug Reaction Reporting Systems; Artificial Intelligence; Computers; Databases, Factual; Drug Prescriptions; Drug-Related Side Effects and Adverse Reactions; Endpoint Determination; Models, Molecular; Quantitative Structure-Activity Relationship; Software; United States; United States Food and Drug Administration

2004
Relationship between brain tissue partitioning and microemulsion retention factors of CNS drugs.
    Journal of medicinal chemistry, 2009, Mar-26, Volume: 52, Issue:6

    Topics: Brain; Central Nervous System; Chromatography, Liquid; Emulsions; Mass Spectrometry

2009
Predicting phospholipidosis using machine learning.
    Molecular pharmaceutics, 2010, Oct-04, Volume: 7, Issue:5

    Topics: Animals; Artificial Intelligence; Databases, Factual; Drug Discovery; Humans; Lipidoses; Models, Biological; Phospholipids; Support Vector Machine

2010
Experimental solubility profiling of marketed CNS drugs, exploring solubility limit of CNS discovery candidate.
    Bioorganic & medicinal chemistry letters, 2010, Dec-15, Volume: 20, Issue:24

    Topics: Central Nervous System Agents; Drug Evaluation, Preclinical; Hydrogen-Ion Concentration; Pharmaceutical Preparations; Solubility

2010
QSAR-based permeability model for drug-like compounds.
    Bioorganic & medicinal chemistry, 2011, Apr-15, Volume: 19, Issue:8

    Topics: Caco-2 Cells; Cell Membrane Permeability; Drug Discovery; Humans; Pharmaceutical Preparations; Pharmacokinetics; Quantitative Structure-Activity Relationship

2011
Comparison of the accuracy of experimental and predicted pKa values of basic and acidic compounds.
    Pharmaceutical research, 2014, Volume: 31, Issue:4

    Topics: Chemistry, Pharmaceutical; Forecasting; Hydrogen-Ion Concentration; Pharmaceutical Preparations; Random Allocation

2014