sultamicillin has been researched along with sulperazone* in 3 studies
3 other study(ies) available for sultamicillin and sulperazone
Article | Year |
---|---|
Simultaneous determination of ampicillin, cefoperazone, and sulbactam in pharmaceutical formulations by HPLC with beta-cyclodextrin stationary phase.
An accurate and reproducible method for the simultaneous determination of ampicillin (AMP), sulbactam (SUL), and cefoperazone (CFP) in pharmaceutical formulations by using HPLC with beta-CD stationary phase was developed. It involved the use of the added tetraethylammonium acetate (TEAA) reagent, pH, and methanol as the significant parameters to find the optimum separation condition. A high resolution and selectivity of analytes was obtained by running the mobile phase in methanol-5 mM TEAA buffer = 35:65 (v/v, pH 4.5) at 280 nm. The mean recoveries ranged from 96.6 to 103.3% for AMP in the synthetic mixture, 97.6 to 103.0% for SUL, and 97.0 to 104.0% for CFP. The low LOD (<1.8 microg/mL) and low CV (<0.9%) assured that this method was sensitive and reproducible. The assay of analytes in commercial products exhibited that it was convenient and reproducible for routine analyses of these components in sterilized H(2)O, saline, or 5% dextrose injection solutions. Topics: Ampicillin; beta-Cyclodextrins; Cefoperazone; Chemistry Techniques, Analytical; Chemistry, Pharmaceutical; Chromatography; Chromatography, High Pressure Liquid; Drug Combinations; Glucose; Methanol; Models, Chemical; Reproducibility of Results; Sulbactam; Temperature | 2007 |
In vivo application of biodegradable controlled antibiotic release systems for the treatment of implant-related osteomyelitis.
In this study the construction and in vivo testing of antibiotic-loaded polyhydroxyalkanoate rods were planned for use in the treatment of implant-related osteomyelitis. The rods were constructed of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and poly(3-hydroxybutyrate-co-4-hydroxybutyrate), carrying 50% (w/w) Sulperazone or Duocid. They were implanted in rabbit tibia in which implant-related osteomyelitis (IRO) had been induced with Staphylococcus aureus. The effectiveness of the antibiotics in the treatment of IRO was determined. The establishment of IRO with bacterial inoculation was complete after 3 weeks with 100% infection rate in all groups. There was no contamination or super-infection. Both antibiotics were found to be highly effective against the bacteria. Following the application of Sulperazone-P(3-HB-co-4-HB) rods, no infective agents could be isolated from the infection site within the 6-week test period, indicating complete treatment of the infection. Macroscopical evaluation at follow-up revealed no drainage, minimal swelling and increase in local warmth, most probably due to the surgery rather than to a reaction towards the implant. The overall scores for radiological findings by the end of 6 weeks were 0.8/5 for the antibiotic-loaded rod implanted in the right limb, and 1.1/5 for the antibiotic-free rod implanted in the left limb. There was no statistical difference between the antibiotic-loaded and antibiotic-free polymeric rods. In vivo drug release was almost complete within the first week. One interesting observation, however, was that the therapy was still very effective even when the release rate was very high. In the SEM of in vitro tested rods, the polymeric component was unchanged in 2 weeks while the drug leached out, leaving voids behind. In vivo, however, the morphology of the implant was significantly modified within 6 weeks post-implantation. Since a substantial degree of the in vivo drug release was complete within 1 week, we believe that dissolution of the drug must be the predominant mechanism through which the drug release is controlled. Topics: Absorbable Implants; Ampicillin; Animals; Cefoperazone; Drug Carriers; Drug Combinations; Humans; Hydroxybutyrates; Osteomyelitis; Polyesters; Prostheses and Implants; Prosthesis Implantation; Rabbits; Staphylococcal Infections; Staphylococcus aureus; Sulbactam; Tibia | 2001 |
Biodegradable polyhydroxyalkanoate implants for osteomyelitis therapy: in vitro antibiotic release.
Various random copolyesters of 3-hydroxybutyrate and 3-hydroxyvalerate (PHBV) and 3-hydroxybutyrate and 4-hydroxybutyrate P(3HB-4HB) were used in the construction of biodegradable, implantable rods for the local delivery of antibiotics (Sulperazone and Duocid) in chronic osteomyelitis therapy. Drug loading, type of active agent, and additional coating of the implant surface all have significant contributions to the in vitro release profile. The rate and duration of Sulperazone release from P(3HB-4HB) rods were controlled by the polymer/drug ratio (drug loading). The rate of drug dissolution was substantially higher than that of polymer degradation. Therefore, the release phenomenon was more dependent on drug dissolution rather than on polymer degradation or diffusion. Coating rods with the same type of polymer substantially reduced the initial burst effect observed with the uncoated rods, and significantly decreased the release rate so that the release kinetics became almost zero order. Antibiotic release from coated rods was sustained for over a period of 2 weeks at a constant rate, whereas uncoated rods released their contents in less than a week. Impregnation of Duocid into the hydrophobic polymer matrix yielded a rod with a smoother surface topography. The release from these rods was significantly higher than for rods loaded with Sulperazone and a zero order release could not be obtained with these samples. Topics: Ampicillin; Anti-Bacterial Agents; Biocompatible Materials; Cefoperazone; Drug Combinations; Drug Implants; Humans; Hydroxybutyrates; In Vitro Techniques; Materials Testing; Microscopy, Electron, Scanning; Osteomyelitis; Polyesters; Sulbactam | 2001 |