sulprostone and beraprost

sulprostone has been researched along with beraprost* in 2 studies

Other Studies

2 other study(ies) available for sulprostone and beraprost

ArticleYear
Prostanoid receptors involved in regulation of the beating rate of neonatal rat cardiomyocytes.
    PloS one, 2012, Volume: 7, Issue:9

    Although prostanoids are known to be involved in regulation of the spontaneous beating rate of cultured neonatal rat cardiomyocytes, the various subtypes of prostanoid receptors have not been investigated in detail. In our experiments, prostaglandin (PG)F(2α) and prostanoid FP receptor agonists (fluprostenol, latanoprost and cloprostenol) produced a decrease in the beating rate. Two prostanoid IP receptor agonists (iloprost and beraprost) induced first a marked drop in the beating rate and then definitive abrogation of beating. In contrast, the prostanoid DP receptor agonists (PGD(2) and BW245C) and TP receptor agonists (U-46619) produced increases in the beating rate. Sulprostone (a prostanoid EP(1) and EP(3) receptor agonist) induced marked increases in the beating rate, which were suppressed by SC-19220 (a selective prostanoid EP(1) antagonist). Butaprost (a selective prostanoid EP(2) receptor agonist), misoprostol (a prostanoid EP(2) and EP(3) receptor agonist), 11-deoxy-PGE(1) (a prostanoid EP(2), EP(3) and EP(4) receptor agonist) did not alter the beating rate. Our results strongly suggest that prostanoid EP(1) receptors are involved in positive regulation of the beating rate. Prostanoid EP(1) receptor expression was confirmed by western blotting with a selective antibody. Hence, neonatal rat cardiomyocytes express both prostanoid IP and FP receptors (which negatively regulate the spontaneous beating rate) and prostanoid TP, DP(1) and EP(1) receptors (which positively regulate the spontaneous beating rate).

    Topics: 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid; Animals; Animals, Newborn; Blotting, Western; Cells, Cultured; Cloprostenol; Dibenz(b,f)(1,4)oxazepine-10(11H)-carboxylic acid, 8-chloro-, 2-acetylhydrazide; Dinoprostone; Dose-Response Relationship, Drug; Epoprostenol; Hydantoins; Iloprost; Latanoprost; Myocytes, Cardiac; Prostaglandin D2; Prostaglandins F, Synthetic; Rats; Rats, Sprague-Dawley; Receptors, Prostaglandin; Receptors, Prostaglandin E, EP1 Subtype; Receptors, Thromboxane

2012
Selexipag: a selective prostacyclin receptor agonist that does not affect rat gastric function.
    The Journal of pharmacology and experimental therapeutics, 2010, Volume: 335, Issue:1

    Selexipag [2-{4-[(5,6-diphenylpyrazin-2-yl)(isopropyl)amino]butoxy}-N-(methylsulfonyl)acetamide] is an orally available prostacyclin (PGI(2)) receptor (IP receptor) agonist that is chemically distinct from PGI(2) and is in clinical development for the treatment of pulmonary arterial hypertension. Selexipag is highly selective for the human IP receptor in vitro, whereas analogs of PGI(2) can activate prostanoid receptors other than the IP receptor. The goal of this study was to determine the impact of selectivity for the IP receptor on gastric function by measuring 1) contraction of rat gastric fundus ex vivo and 2) the rates of gastric emptying and intestinal transport in response to selexipag in comparison with other PGI(2) analogs. The rat gastric fundus expresses mRNA encoding multiple prostanoid receptors to different levels: prostaglandin E receptor 1 (EP(1)) > prostaglandin E receptor 3 (EP(3)), IP receptor > prostaglandin D(2) receptor 1, thromboxane receptor. Selexipag and metabolite {4-[(5,6-diphenylpyrazin-2-yl)(isopropyl)amino]butoxy}acetic acid (ACT-333679) did not contract gastric fundus at concentrations up to 10(-3) M. In contrast, the PGI(2) analogs iloprost and beraprost evoked concentration-dependent contraction of gastric fundus. Contraction to treprostinil was observed at high concentration (10(-4) M). Contraction to all PGI(2) analogs was mediated via activation of EP(3) receptors, although EP(1) receptors also contributed to the contraction of gastric fundus to iloprost and beraprost. Antagonism of IP receptors did not affect responses. Oral selexipag did not significantly alter gastric function in vivo, as measured by rates of stomach emptying and intestinal transport, whereas beraprost slowed gastrointestinal transport. The high functional selectivity of selexipag and ACT-333679 for the IP receptor precludes a stimulatory action on gastric smooth muscle and may help minimize gastric side effects such as nausea and vomiting.

    Topics: Acetamides; Animals; Dinoprostone; Dose-Response Relationship, Drug; Epoprostenol; Gastric Emptying; Gastrointestinal Transit; Humans; Iloprost; Male; Muscle Contraction; Pulmonary Artery; Pyrazines; Rats; Receptors, Epoprostenol; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Stomach

2010