Page last updated: 2024-08-16

sulfinpyrazone and paclitaxel

sulfinpyrazone has been researched along with paclitaxel in 9 studies

Research

Studies (9)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's4 (44.44)29.6817
2010's5 (55.56)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Belinsky, MG; Chen, ZS; Hopper-Borge, E; Kotova, E; Kruh, GD; Shchaveleva, I1
Lombardo, F; Obach, RS; Waters, NJ1
Chupka, J; El-Kattan, A; Feng, B; Miller, HR; Obach, RS; Troutman, MD; Varma, MV1
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A1
Fisk, L; Greene, N; Naven, RT; Note, RR; Patel, ML; Pelletier, DJ1
Ekins, S; Williams, AJ; Xu, JJ1
Chen, X; Lin, X; Skolnik, S; Wang, J1
Aleo, MD; Bonin, PD; Luo, Y; Potter, DM; Swiss, R; Will, Y1
Bessho, Y; Maeda, H; Maeno, K; Miyazaki, M; Oguri, T; Ozasa, H; Sato, S; Ueda, R; Uemura, T1

Other Studies

9 other study(ies) available for sulfinpyrazone and paclitaxel

ArticleYear
Characterization of the transport properties of human multidrug resistance protein 7 (MRP7, ABCC10).
    Molecular pharmacology, 2003, Volume: 63, Issue:2

    Topics: Biological Transport; Cells, Cultured; Cyclosporine; Estradiol; Glycocholic Acid; Humans; Kinetics; Leukotriene Antagonists; Leukotriene C4; Multidrug Resistance-Associated Proteins; Osmotic Pressure; Propionates; Quinolines; Recombinant Proteins; Transfection

2003
Trend analysis of a database of intravenous pharmacokinetic parameters in humans for 670 drug compounds.
    Drug metabolism and disposition: the biological fate of chemicals, 2008, Volume: 36, Issue:7

    Topics: Blood Proteins; Half-Life; Humans; Hydrogen Bonding; Infusions, Intravenous; Pharmacokinetics; Protein Binding

2008
Physicochemical determinants of human renal clearance.
    Journal of medicinal chemistry, 2009, Aug-13, Volume: 52, Issue:15

    Topics: Humans; Hydrogen Bonding; Hydrogen-Ion Concentration; Hydrophobic and Hydrophilic Interactions; Kidney; Metabolic Clearance Rate; Molecular Weight

2009
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
    Chemical research in toxicology, 2010, Volume: 23, Issue:1

    Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship

2010
Developing structure-activity relationships for the prediction of hepatotoxicity.
    Chemical research in toxicology, 2010, Jul-19, Volume: 23, Issue:7

    Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Humans; Structure-Activity Relationship; Tetracyclines; Thiophenes

2010
A predictive ligand-based Bayesian model for human drug-induced liver injury.
    Drug metabolism and disposition: the biological fate of chemicals, 2010, Volume: 38, Issue:12

    Topics: Bayes Theorem; Chemical and Drug Induced Liver Injury; Humans; Ligands

2010
Attenuation of intestinal absorption by major efflux transporters: quantitative tools and strategies using a Caco-2 model.
    Drug metabolism and disposition: the biological fate of chemicals, 2011, Volume: 39, Issue:2

    Topics: Adenosine; ATP Binding Cassette Transporter, Subfamily B; ATP Binding Cassette Transporter, Subfamily G, Member 2; ATP-Binding Cassette Sub-Family B Member 4; ATP-Binding Cassette Transporters; Biological Transport; Caco-2 Cells; Chromatography, Liquid; Dibenzocycloheptenes; Diketopiperazines; Drug Discovery; Heterocyclic Compounds, 4 or More Rings; Humans; Intestinal Absorption; Mass Spectrometry; Models, Biological; Neoplasm Proteins; Pharmaceutical Preparations; Predictive Value of Tests; Propionates; Quinolines; Substrate Specificity

2011
Human drug-induced liver injury severity is highly associated with dual inhibition of liver mitochondrial function and bile salt export pump.
    Hepatology (Baltimore, Md.), 2014, Volume: 60, Issue:3

    Topics: Animals; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Chemical and Drug Induced Liver Injury; Humans; Male; Mitochondria, Liver; Rats; Rats, Sprague-Dawley; Severity of Illness Index

2014
MRP7/ABCC10 expression is a predictive biomarker for the resistance to paclitaxel in non-small cell lung cancer.
    Molecular cancer therapeutics, 2008, Volume: 7, Issue:5

    Topics: Antineoplastic Agents, Phytogenic; Biomarkers, Tumor; Carcinoma, Non-Small-Cell Lung; Drug Resistance, Neoplasm; Gene Expression; Humans; Lung Neoplasms; Multidrug Resistance-Associated Proteins; Paclitaxel; RNA, Small Interfering; Sulfinpyrazone; Tumor Cells, Cultured

2008