Page last updated: 2024-08-16

sulfaphenazole and midazolam

sulfaphenazole has been researched along with midazolam in 6 studies

Research

Studies (6)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's1 (16.67)18.2507
2000's0 (0.00)29.6817
2010's4 (66.67)24.3611
2020's1 (16.67)2.80

Authors

AuthorsStudies
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A1
Dai, R; Liu, Y; She, M; Wu, Z1
Artursson, P; Haglund, U; Karlgren, M; Kimoto, E; Lai, Y; Norinder, U; Vildhede, A; Wisniewski, JR1
Chen, F; Chen, W; Lan, L; Li, B; Li, J; Liu, Y; Mao, F; Ni, S; Wei, H; Zhu, J1
Chen, LZ; Huang, X; Liu, MM; Liu, XH; Ma, D; Shi, JB; Shu, HY; Wu, J; Yu, YL1
Bayliss, MK; Eddershaw, PJ; Herriott, D; Manchee, GR; Park, GR; Ranshaw, LE; Tarbit, MH1

Other Studies

6 other study(ies) available for sulfaphenazole and midazolam

ArticleYear
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
    Chemical research in toxicology, 2010, Volume: 23, Issue:1

    Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship

2010
The inhibition study of human UDP-glucuronosyltransferases with cytochrome P450 selective substrates and inhibitors.
    Journal of enzyme inhibition and medicinal chemistry, 2011, Volume: 26, Issue:3

    Topics: Cytochrome P-450 Enzyme Inhibitors; Enzyme Activation; Enzyme Inhibitors; Glucuronosyltransferase; Humans; Molecular Structure; Recombinant Proteins; Stereoisomerism; Structure-Activity Relationship; Substrate Specificity

2011
Classification of inhibitors of hepatic organic anion transporting polypeptides (OATPs): influence of protein expression on drug-drug interactions.
    Journal of medicinal chemistry, 2012, May-24, Volume: 55, Issue:10

    Topics: Atorvastatin; Biological Transport; Drug Interactions; Estradiol; Estrone; HEK293 Cells; Heptanoic Acids; Humans; Hydroxymethylglutaryl-CoA Reductase Inhibitors; In Vitro Techniques; Least-Squares Analysis; Liver; Liver-Specific Organic Anion Transporter 1; Models, Molecular; Multivariate Analysis; Organic Anion Transporters; Organic Anion Transporters, Sodium-Independent; Protein Isoforms; Pyrroles; Solute Carrier Organic Anion Transporter Family Member 1B3; Structure-Activity Relationship; Transfection

2012
Novel Terminal Bipheny-Based Diapophytoene Desaturases (CrtN) Inhibitors as Anti-MRSA/VISR/LRSA Agents with Reduced hERG Activity.
    Journal of medicinal chemistry, 2018, 01-11, Volume: 61, Issue:1

    Topics: Animals; Drug Design; Enzyme Inhibitors; ERG1 Potassium Channel; HEK293 Cells; Hep G2 Cells; Humans; Inhibitory Concentration 50; Methicillin-Resistant Staphylococcus aureus; Mice; Oxidoreductases; Rats; Safety; Solubility; Structure-Activity Relationship; Water

2018
Discovery and development of novel pyrimidine and pyrazolo/thieno-fused pyrimidine derivatives as potent and orally active inducible nitric oxide synthase dimerization inhibitor with efficacy for arthritis.
    European journal of medicinal chemistry, 2021, Mar-05, Volume: 213

    Topics: Administration, Oral; Animals; Arthritis; Cells, Cultured; Dimerization; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Development; Enzyme Inhibitors; Freund's Adjuvant; Humans; Lipopolysaccharides; Male; Mice; Molecular Structure; Nitric Oxide; Nitric Oxide Synthase Type II; Pyrazoles; Pyrimidines; Rats; Rats, Sprague-Dawley; RAW 264.7 Cells; Structure-Activity Relationship

2021
The aliphatic oxidation of salmeterol to alpha-hydroxysalmeterol in human liver microsomes is catalyzed by CYP3A.
    Drug metabolism and disposition: the biological fate of chemicals, 1996, Volume: 24, Issue:5

    Topics: Adrenergic beta-Agonists; Albuterol; Biomarkers; Chromatography, High Pressure Liquid; Cytochrome P-450 Enzyme Inhibitors; Cytochrome P-450 Enzyme System; Disulfiram; Humans; Isoenzymes; Ketoconazole; Microsomes, Liver; Midazolam; Molecular Structure; Oxidation-Reduction; Quinidine; Recombinant Proteins; Salmeterol Xinafoate; Sulfaphenazole; Theophylline

1996